Skip to main content

AB Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions

  • Chapter
Handbook of Materials Modeling

Abstract

Previous and present “academic” research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. In investigations of crystal growth one would, for example, study the diffusion of adsorbed atoms at surfaces, and in the field of heterogeneous catalysis it is the reaction path of adsorbed species that is analyzed. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is often believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases, also the interplay of all processes, i.e., how they act together, plays a crucial role. For a predictive materials science modeling with microscopic understanding, a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as density-functional theory (DFT) have become a standard tool for the accurate description of the individual atomic and molecular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B, 136, 864, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn and L. Sham, “Self consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, 1133, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  3. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

    Google Scholar 

  4. R.M. Dreizler and E.K.U. Gross, Density Functional Theory, Springer, Berlin, 1990.

    MATH  Google Scholar 

  5. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1997.

    Google Scholar 

  6. D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd edn., Academic Press, San Diego, 2002.

    Google Scholar 

  7. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett., 55, 2471, 1985.

    Article  ADS  Google Scholar 

  8. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, “Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys., 64, 1045, 1992.

    Article  ADS  Google Scholar 

  9. G. Galli and A. Pasquarello, “First-principle molecular dynamics,” In: M.P. Allen, and DJ. Tildesley (eds.), Computer Simulations in Chemical Physics, Kluwer, Dordrecht, 1993.

    Google Scholar 

  10. A. Gross, “Reactions at surfaces studied by ab initio dynamics calculations,” Surf. Sci. Rep., 32, 293, 1998.

    ADS  Google Scholar 

  11. G.J. Kroes, “Six-dimensional quantum dynamics of dissociative chemisorption of H2 on metal surfaces,” Prog. Surf. Sci., 60, 1, 1999.

    Article  ADS  Google Scholar 

  12. A.F. Voter, F. Montalenti, and T.C. Germann, “Extending the time scale in atomistic simulation of materials,” Annu. Rev. Mater. Res., 32, 321, 2002.

    Article  Google Scholar 

  13. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  14. R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley, New York, 1996.

    Google Scholar 

  15. C. Stampfl, M.V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, “Catalysis and corrosion: the theoretical surface-science context,” Surf. Sci., 500, 368, 2002.

    Article  ADS  Google Scholar 

  16. M. Scheffler and C. Stampfl, “Theory of adsorption on metal substrates,” In: K. Horn and M. Scheffler (eds.), Handbook of Surface Science, vol. 2: Electronic Structure, Elsevier, Amsterdam, 2000.

    Google Scholar 

  17. G.R. Darling and S. Holloway, “The dissociation of diatomic molecules at surfaces,” Rep. Prog. Phys., 58, 1595, 1995.

    Article  ADS  Google Scholar 

  18. E. Kaxiras, Y. Bar-Yam, J.D. Joannopoulos, and K.C. Pandey, “Ab initio theory of polar semiconductor surfaces. I. Methodology and the (22) reconstructions of GaAs(111),” Phys. Rev. B, 35, 9625, 1987.

    Article  ADS  Google Scholar 

  19. M. Scheffler, “Thermodynamic aspects of bulk and surface defects — first-principles calculations,” In: J. Koukal (ed.), Physics of Solid Surfaces — 1987, Elsevier, Amsterdam, 1988.

    Google Scholar 

  20. M. Scheffler and J. Dabrowski, “Parameter-free calculations of total energies, inter-atomic forces, and vibrational entropies of defects in semiconductors,” Phil. Mag. A, 58, 107, 1988.

    Article  ADS  Google Scholar 

  21. G.-X. Qian, R.M. Martin, and D.J. Chadi, “First-principles study of the atomic reconstructions and energies of Ga-and As-stabilized GaAs(100) surfaces,” Phys. Rev. B, 38, 7649, 1988.

    Article  ADS  Google Scholar 

  22. X.-G. Wang, W. Weiss, Sh.K. Shaikhutdinov, M. Ritter, M. Petersen, F. Wagner, R. Schlögl, and M. Scheffler, “The hematite (alpha-Fe2O3)(0001) surface: evidence for domains of distinct chemistry,” Phys. Rev. Lett., 81, 1038, 1998.

    Article  ADS  Google Scholar 

  23. X.-G. Wang, A. Chaka, and M. Scheffler, “Effect of the environment on Al2O3(0001) surface structures,” Phys. Rev. Lett., 84, 3650, 2000.

    Article  ADS  Google Scholar 

  24. K. Reuter and M. Scheffler, “Composition, structure, and stability of RuO2(110) as a function of oxygen pressure,” Phys. Rev. B, 65, 035406, 2002.

    Article  ADS  Google Scholar 

  25. K. Reuter and M. Scheffler, “First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions,” Phys. Rev. Lett., 90, 046103, 2003.

    Article  ADS  Google Scholar 

  26. K. Reuter and M. Scheffler, “Composition and structure of the RuO2(1 10) surface in an O2 and CO environment: implications for the catalytic formation of CO2,” Phys. Rev. B, 68, 045407, 2003.

    Article  ADS  Google Scholar 

  27. Z. Lodzianan and J.K. Nørskov, “Stability of the hydroxylated (0001) surface of Al2O3,” J. Chem. Phys., 118, 11179, 2003.

    Article  ADS  Google Scholar 

  28. K. Reuter and M. Scheffler, “Oxide formation at the surface of late 4d transition metals: insights from first-principles atomistic thermodynamics,” Appl. Phys. A, 78, 793, 2004.

    Article  ADS  Google Scholar 

  29. K. Reuter “Nanometer and sub-nanometer thin oxide films at surfaces of late transition metals,” In: U. Heiz, H. Hakkinen, and U. Landman (eds.), Nanocatalysis: Principles, Methods, Case Studies, 2005.

    Google Scholar 

  30. G. Ertl, H. Knözinger, and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, Wiley, New York, 1997.

    Google Scholar 

  31. D.P. Woodruff and T.A. Delchar, Modern Techniques of Surface Science, 2nd edn., Cambridge University Press, Cambridge, 1994.

    Book  Google Scholar 

  32. W.-X. Li, C. Stampfl, and M. Scheffler, “Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics,” Phys. Rev. B, 68, 16541, 2003.

    Google Scholar 

  33. W.-X. Li, C. Stampfl, and M. Scheffler, “Why is a noble metal catalytically active? the role of the O-Ag interaction in the function of silver as an oxidation catalyst,” Phys. Rev. Lett., 90, 256102, 2003.

    Article  ADS  Google Scholar 

  34. D.A. Mc Quarrie, Statistical Mechanics, Harper and Row, New York, 1976.

    Google Scholar 

  35. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd edn., U.S. National Bureau of Standards, Washington, D.C., 1971.

    Google Scholar 

  36. E. Lundgren, J. Gustafson, A. Mikkelsen, J.N. Andersen, A. Stierle, H. Dosch, M. Todorova, J. Rogal, K. Reuter, and M. Scheffler, “Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures,” Phys. Rev. Lett., 92, 046101, 2004.

    Article  ADS  Google Scholar 

  37. M. Todorova, E. Lundgren, V. Blum, A. Mikkelsen, S. Gray, J. Gustafson, M. Borg, J. Rogal, K. Reuter, J.N. Andersen, and M. Scheffler, “The Pd(100)-(√5 x √5) R27°-O surface oxide revisited,” Surf. Sci., 541, 101, 2003.

    Article  ADS  Google Scholar 

  38. E. Lundgren, G. Kresse, C. Klein, M. Borg, J.N. Andersen, M. De Santis, Y Gauthier, C. Konvicka, M. Schmid, and P. Varga, “Two-dimensional oxide on Pd(111),” Phys. Rev. Lett., 88, 246103, 2002.

    Article  ADS  Google Scholar 

  39. A. Michaelides, M.L. Bocquet, P. Sautet, A. Alavi, and D.A. King, “Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag(111),” Chem. Phys. Lett., 367, 344, 2003.

    Article  ADS  Google Scholar 

  40. C.M. Weinert and M. Scheffler, In: H.J. von Bardeleben (ed.), Defects in Semiconductors, Mat. Sci. Forum, 10–12, 25, 1986.

    Google Scholar 

  41. S.-H. Lee, W. Moritz, and M. Scheffler, “GaAs(00l) under conditions of low as pressure: edvidence for a novel surface geometry,” Phys. Rev. Lett., 85, 3890, 2000.

    Article  ADS  Google Scholar 

  42. C.B. Duke, “Semiconductor surface reconstruction: the structural chemistry of twodimensional surface compounds,” Chem. Rev., 96, 1237, 1996.

    Article  Google Scholar 

  43. T. Engel and G. Ertl, “Oxidation of carbon monoxide,” In: D.A. King and D.P. Woodruff (eds.), The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Elsevier, Amsterdam, 1982.

    Google Scholar 

  44. B.L.M. Hendriksen, S.C. Bobaru, and J.W.M. Frenken, “Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunnelling microscopy,” Surf. Sci., 552, 229, 2003.

    Article  ADS  Google Scholar 

  45. H. Over and M. Muhler, “Catalytic CO oxidation over ruthenium — bridging the pressure gap,” Prog. Surf. Sci., 72, 3, 2003.

    Article  ADS  Google Scholar 

  46. G. Ertl, “Heterogeneous catalysis on the atomic scale,” J. Mol. Catal. A, 182, 5, 2002.

    Article  Google Scholar 

  47. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  48. D. de Fontaine, In: P.E.A. Turchi and A. Gonis (eds.), Statics and Dynamics of Alloy Phase Transformations, NATO ASI Series, Plenum Press, New York, 1994.

    Google Scholar 

  49. J.M. Sanchez, F. Ducastelle, and D. Gratias, “Generalized cluster description of multicomponent systems,” Physica A, 128, 334, 1984.

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Zunger, “First principles statistical mechanics of semiconductor alloys and intermetallic compounds,” In: P.E.A. Turchi and A. Gonis (eds.), Statics and Dynamics of Alloy Phase Transformations, NATO ASI Series, Plenum Press, New York, 1994.

    Google Scholar 

  51. P. Piercy, K. De’Bell, and H. Pfniir, “Phase diagram and critical behavior of the adsorption system O/Ru(001): comparison with lattice-gas models,” Phys. Rev. B, 45, 1869, 1992.

    Article  ADS  Google Scholar 

  52. G.M. Xiong, C. Schwennicke, H. Pfniir, and H.-U. Everts, “Phase diagram and phase transitions of the adsorbate system S/Ru(0001): a monte carlo study of a lattice gas model,” Z Phys. B, 104, 529, 1997.

    Article  ADS  Google Scholar 

  53. V.P. Zhdanov and B. Kasemo, “Simulation of oxygen desorption from Pt(l 11),” Surf. Sci., 415, 403, 1998.

    Article  ADS  Google Scholar 

  54. S.-J. Koh and G. Ehrlich, “Pair-and many-atom interactions in the cohesion of surface clusters: Pdx and Irx on W(l 10),” Phys. Rev. B, 60, 5981, 1999.

    Article  ADS  Google Scholar 

  55. L. Osterlund, M.Ø. Pedersen, I. Stensgaard, E. Lægsgaard, and F. Besenbacher, “Quantitative determination of adsorbate-adsorbate interactions,” Phys. Rev. Lett., 83, 4812, 1999.

    Article  ADS  Google Scholar 

  56. S.H. Payne, H.J. Kreuzer, W. Frie, L. Hammer, and K. Heinz, “Adsorption and desorption of hydrogen on Rh(311) and comparison with other Rh surfaces,” Surf. Sci., 421, 279, 1999.

    Article  ADS  Google Scholar 

  57. C. Stampfl, H.J. Kreuzer, S.H. Payne, H. Pfniir, and M. Scheffler, “First-principles theory of surface thermodynamics and kinetics,” Phys. Rev. Lett., 83, 2993, 1999.

    Article  ADS  Google Scholar 

  58. C. Stampfl, HJ. Kreuzer, S.H. Payne, and M. Scheffler, “Challenges in predictive calculations of processes at surfaces: surface thermodynamics and catalytic reactions,” Appl. Phys. A, 69, 471, 1999.

    Article  ADS  Google Scholar 

  59. J. Shao, “Linear model selection by cross-validation,” J. Amer. Statist. Assoc., 88, 486, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  60. P. Zhang, “Model selection via multifold cross-validation,” Ann. statist., 21, 299, 1993.

    Article  MathSciNet  Google Scholar 

  61. A. van de Walle and G. Ceder, “Automating first-principles phase diagram calculations,” J. Phase Equilibria, 23, 348, 2002.

    Article  Google Scholar 

  62. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., 21, 1087, 1976.

    Article  ADS  Google Scholar 

  63. J.-S. McEwen, S.H. Payne, and C. Stampfl, “Phase diagram of O/Ru(0001) from first principles,” Chem. Phys. Lett., 361, 317, 2002.

    Article  ADS  Google Scholar 

  64. H.J. Kreuzer and S.H. Payne, “Theoretical approaches to the kinetics of adsorption, desorption and reactions at surfaces,” In: M. Borowko (eds.), Computational Methods in Surface and Colloid, Marcel Dekker, New York, 2000.

    Google Scholar 

  65. C. Stampfl and M. Scheffler, “Theory of alkali metal adsorption on close-packed metal surfaces,” Surf. Rev. Lett., 2, 317, 1995.

    Article  Google Scholar 

  66. D.L. Actams, “New phenomena in the adsorption of alkali metals on A1 surfaces,” Appl. Phys. A, 62, 123, 1996.

    Article  ADS  Google Scholar 

  67. M. Borg, C. Stampfl, A. Mikkelsen, J. Gustafson, E. Lundgren, M. Scheffler, and J.N. Andersen, “Density of configurational states from first-principles: the phase diagram of Al-Na surface alloys,” Chem. Phys. Chem. (in press), 2005.

    Google Scholar 

  68. F. Wang and D.P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett., 86, 2050, 2001.

    Article  ADS  Google Scholar 

  69. H.C. Kang and W.H. Weinberg, “Modeling the kinetics of heterogeneous catalysis,” Chem. Rev., 95, 667, 1995.

    Article  Google Scholar 

  70. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, “New algorithm for Monte Carlo simulation of ising spin systems,” J. Comp. Phys., 17, 10, 1975.

    Article  ADS  Google Scholar 

  71. D.T. Gillespie, “General method for numerically simulating stochastic time evolution of coupled chemical reactions,” J. Comp. Phys., 22, 403, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  72. A.R Voter, “Classically exact overlayer dynamics: diffusion of rhodium clusters on Rh(100),” Phys. Rev. B, 34, 6819, 1986.

    Article  ADS  Google Scholar 

  73. H.C. Kang and W.H. Weinberg, “Dynamic Monte Carlo with a proper energy barrier: surface diffusion and two-dimensional domain ordering,” J. Chem. Phys., 90, 2824, 1989.

    Article  ADS  Google Scholar 

  74. K.A. Fichthorn and W.H. Weinberg, “Theoretical foundations of dynamical Monte Carlo simulations,” J. Chem. Phys., 95, 1090, 1991.

    Article  ADS  Google Scholar 

  75. P. Ruggerone, C. Ratsch, and M. Scheffler, “Density-functional theory of epitaxial growth of metals,” In: D.A. King and D.P. Woodruff (eds.), Growth and Properties of Ultrathin Epitaxial Layers. The Chemical Physics of Solid Surfaces, vol. 8, Elsevier, Amsterdam, 1997.

    Google Scholar 

  76. C. Ratsch, P. Ruggerone, and M. Scheffler, “Study of strain and temperature dependence of metal epitaxy,” In: Z. Zhang and M.G. Lagally (eds.), Morphological Organization in Epitaxial Growth and Removal, World Scientific, Singapore, 1998.

    Google Scholar 

  77. S. Glasston, K.J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941.

    Google Scholar 

  78. G.H. Vineyard, “Frequency factors and isotope effects in solid state rate processes,” J. Phys. Chem. Solids, 3, 121, 1957.

    Article  ADS  Google Scholar 

  79. K.J. Laidler, Chemical Kinetics, Harper and Row, New York, 1987.

    Google Scholar 

  80. C. Ratsch and M. Scheffler, “Density-functional theory calculations of hopping rates of surface diffusion,” Phys. Rev. B, 58, 13163, 1998.

    Article  ADS  Google Scholar 

  81. G. Henkelman, G. Johannesson, and H. Jonsson, “Methods for finding saddle points and minimum energy paths,” In: S.D. Schwartz (ed.), Progress on Theoretical Chemistry and Physics, Kluwer, New York, 2000.

    Google Scholar 

  82. T. Ala-Nissila, R. Ferrando, and S.C. Ying, “Collective and single particle diffusion on surfaces,” Adv. Phys., 51, 949, 2002.

    Article  ADS  Google Scholar 

  83. S. Ovesson, A. Bogicevic, and B.I. Lundqvist, “Origin of compact triangular islands in metal-on-metal growth,” Phys. Rev. Lett., 83, 2608, 1999.

    Article  ADS  Google Scholar 

  84. K.A. Fichthorn and M. Scheffler, “Island nucleation in thin-film epitaxy: a first-principles investigation,” Phys. Rev. Lett., 84, 5371, 2000.

    Article  ADS  Google Scholar 

  85. P. Kratzer M. Scheffler, “Surface knowledge: Toward a predictive theory of materials,” Comp. in Science and Engineering, 3(6), 16, 2001.

    Article  Google Scholar 

  86. P. Kratzer and M. Scheffler, “Reaction-limited island nucleation in molecular beam epitaxy of compound semiconductors,” Phys. Rev. Lett., 88, 036102, 2002.

    Article  ADS  Google Scholar 

  87. P. Kratzer, E. Penev, and M. Scheffler, “First-principles studies of kinetics in epitaxial growth of III-V semiconductors,” Appl. Phys. A, 75, 79, 2002.

    Article  ADS  Google Scholar 

  88. E.W. Hansen and M. Neurock, “Modeling surface kinetics with first-principles-based molecular simulation,” Chem. Eng. Sci., 54, 3411, 1999.

    Article  Google Scholar 

  89. E.W. Hansen and M. Neurock, “First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd,” J. Catal., 196, 241, 2000.

    Article  Google Scholar 

  90. K. Reuter, D. Frenkel, and M. Scheffler, “The steady state of heterogeneous catalysis, studied with first-principles statistical mechanics,” Phys. Rev. Lett., 93, 116105, 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Reuter, K., Stampf, C., Scheffler, M. (2005). AB Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_10

Download citation

Publish with us

Policies and ethics