Skip to main content

Environment-Dependent Tight-Binding Potential Models

  • Chapter
Handbook of Materials Modeling

Abstract

The use of tight-binding formalism to parametrize the electronic structures of crystals and molecules has been a subject of continuous interest since the pioneering work of Slater and Koster [1] half a century ago. In the last 15 years, tight-binding method has attracted even more attention due to the development of tight-binding total energy models that can provide interatomic forces for molecular dynamics simulations of materials [27]. The simplicity of the tight-binding description makes the method very promising for large scale electronic calculations and atomistic simulations [8, 9]. However, studies of complex systems require that the tight-binding parameters should be “transferable” [4], i.e., should be able to describe accurately the electronic structure and total energy of a material in different bonding configurations. Although tight-binding molecular dynamics has been successfully applied to a number of interesting systems such as carbon fullerenes and carbon nanotubes [1012], the transferability of tight-binding potentials is still a major issue that hinders the wide spread application of the method to more materials of current interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Slater and G.R Koster, Phys. Rev., 94, 1498, 1954.

    Article  ADS  MATH  Google Scholar 

  2. C.Z. Wang, C.T. Chan, and K.M. Ho, Phys. Rev., B, 39, 8592, 1989.

    ADS  Google Scholar 

  3. F.S. Khan and J.Q. Broughton, Phys. Rev., B, 39, 3688, 1989.

    Article  ADS  Google Scholar 

  4. L. Goodwin, A.J. Skinner, and D.G. Pettifor, Europhys. Lett., 9, 701, 1989.

    Article  ADS  Google Scholar 

  5. C.Z. Wang, C.T. Chan, and K.M. Ho, Phys. Rev., B, 42, 11276, 1990.

    Article  ADS  Google Scholar 

  6. J.L. Mercer, Jr. and M.Y. Chou, Phys. Rev., B, 47, 9366, 1993.

    Article  ADS  Google Scholar 

  7. M.J. Mehl and D.A. Papaconstantopoulos, In: C.Y. Fong (ed.), Topic in Computa-tional Materials Science, World Scientific, Singapore, pp. 169–213, 1997.

    Google Scholar 

  8. C.Z. Wang, and K.M. Ho, In: I. Prigogine, and S.A. Rice (eds.), Advances in Chem. Phys., Vol. XCIII, John Wiley & Sons, New York, pp. 651–702, 1996.

    Chapter  Google Scholar 

  9. L. Colombo, Annu. Rev. Comput. Phys., 147(IV), 1, 1996.

    Google Scholar 

  10. C.Z. Wang, B.L. Zhang, K.M. Ho, and X.Q. Wang, Int. J. Mod. Phys. B, 7, 4305, 1993.

    Article  ADS  Google Scholar 

  11. C.Z. Wang, B.L. Zhang, and K.M. Ho, In: D.A. Jelski and T.R Geoge, (eds.), Com-putational Studies of New Materials, World Scientific, Singapore, pp.74–111, 1999.

    Google Scholar 

  12. C.Z. Wang and K.M. Ho, J. Comput. Theor. Nanosci., 1, 1, 2004.

    Article  Google Scholar 

  13. P.O. Lowdin, J. Chem. Phys., 18, 365, 1950.

    Article  ADS  Google Scholar 

  14. M.S. Tang, C.Z. Wang, C.T. Chan, and K.M. Ho, Phys. Rev., B, 53, 979, 1996.

    Article  ADS  Google Scholar 

  15. C.Z. Wang, B.C. Pan, and K.M. Ho, J. Phys. Condens. Matter, 11, 2043, 1999.

    Article  ADS  Google Scholar 

  16. W.C. Lu, C.Z. Wang, M.W. Schmidt, L. Bytautas, K.M. Ho, and K. Ruedenberg, J. Chem. Phys., 120, 2629, 2004.

    Article  ADS  Google Scholar 

  17. W.C. Lu, C.Z. Wang, M.W. Schmidt, L. Bytautas, K.M. Ho, and K. Ruedenberg, J. Chem. Phys., 120, 2638, 2004.

    Article  ADS  Google Scholar 

  18. W.C. Lu, C.Z. Wang, Z.L. Chan, K. Ruedenberg, and K.M. Ho, Phys. Rev. B, 70, 041101, 2004.

    Article  ADS  Google Scholar 

  19. W.C. Lu, C.Z. Wang, K. Ruedenberg, and K.M. Ho, to be published.

    Google Scholar 

  20. C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho, J. Phys. Condens. Matter, 4, 6047, 1992.

    Article  ADS  Google Scholar 

  21. W.A. Harrison, Electronic Structure and the Properties of Solids, Freeman, San Francisco, 1980.

    Google Scholar 

  22. D.J. Chadi, Phys. Rev. Lett., 41, 1062, 1978; Phys. Rev. B, 29, 785, 1984.

    Article  ADS  Google Scholar 

  23. S. Sawada, Vacuum, 41, 612, 1990.

    Article  Google Scholar 

  24. M. Kohyama, J. Phys. Condens. Matter, 3, 2193, 1991.

    Article  ADS  Google Scholar 

  25. J.L. Mercer, Jr. and M.Y. Chou, Phys. Rev. B, 49, 8506, 1994.

    Article  ADS  Google Scholar 

  26. R.E. Cohen, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B, 50, 14694, 1994.

    Article  ADS  Google Scholar 

  27. Q.M. Li and R. Biswas, Phys. Rev. B, 50, 18090, 1994.

    Article  ADS  Google Scholar 

  28. O. Madelung, M. Schulz, and H. Weiss (eds.), Semiconductors: Physics of Group TV Elements and III-V Compounds, Landolt-Börnstein New Series III/17a, Springer-Verlag, New York 1982; O. Madelung and M. Schulz, (eds.), Semiconductors: Intrinsic Properties of Group TV Elements and III-V, II-VI and I-VII Compounds, Landolt-Börnstein New Series III/22a, Springer-Verlag, New York, 1987.

    Google Scholar 

  29. M.S. Dresselhaus and G. Dresselhaus, In: M. Cardona and G. Guntherodt (eds.), Light Scattering in Solids III, Springer, Berlin, pp. 8, 1982.

    Google Scholar 

  30. For a review, see J. Robertson, Adv. Phys. 35, 317, (1986), and R. Clausing et al. (eds.), Diamond and Diamond-like Films and Coatings, NATO Advanced Study Institutes Ser. B, 266, 331, Plenum, New York, 1991.

    Google Scholar 

  31. D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Phys. Rev. Lett., 67, 773, 1991.

    Article  ADS  Google Scholar 

  32. P.H. Gaskell, A. Saeed, P. Chieux, and D.R. McKenzie, Phys. Rev. Lett., 67, 1286, 1991.

    Article  ADS  Google Scholar 

  33. C.Z. Wang and K.M. Ho, Phys. Rev. Lett., 71, 1184, 1993.

    Article  ADS  Google Scholar 

  34. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, and M. Parrinello, Phys. Rev. Lett., 76, 768, 1996.

    Article  ADS  Google Scholar 

  35. C.Z. Wang and K.M. Ho, “Structural trends in amorphous carbon,” In: M.P. Siegal et al. (eds.), MRS Symposium Proceedings, 498, MRS, 1998.

    Google Scholar 

  36. I. Kwon, R. Biswas, C.Z. Wang, K.M. Ho, and CM. Soukoulis, Phys. Rev. B, 49, 7242, 1994.

    Article  ADS  Google Scholar 

  37. J.R. Morris, Z.Y. Lu, D.M. Ring, J.B. Xiang, K.M. Ho, C.Z. Wang, and C.L. Fu, Phys. Rev. B, 58, 11241, 1998.

    Article  ADS  Google Scholar 

  38. J. Tersoff, Phys. Rev. B, 38, 9902, 1988.

    Article  ADS  Google Scholar 

  39. T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T. Diaz de la Rubia, J. Kim, A.F. Voter, and J.D. Kress, Modell. Simul. Matter Sci. Eng., 8, 825, 2000.

    Article  ADS  Google Scholar 

  40. J.R. Chelikowsky, J.C. Phillips, M. Kamal, and M. Strauss, Phys. Rev. Lett., 62, 292, 1989.

    Article  ADS  Google Scholar 

  41. J.R. Chelikowsky, K.M. Glassford, and J. C. Phillips, Phys. Rev. B, 44, 1538, 1991.

    Article  ADS  Google Scholar 

  42. U. Rothlisberger, W. Andreoni, and P. Giannozzi, J. Chem. Phys., 96, 1248, 1992.

    Article  ADS  Google Scholar 

  43. J.C. Phillips, Phys. Rev. B, 47, 14132, 1993.

    Article  ADS  Google Scholar 

  44. J.C. Grossman and L. Mitas, Phys. Rev. Lett., 74, 1323, 1995.

    Article  ADS  Google Scholar 

  45. Y.F. Li, C.Z. Wang, and K.M. Ho, unpublished.

    Google Scholar 

  46. J.C. Grossman and L. Mitas, Phys. Rev. B, 52, 16735, 1995.

    Article  ADS  Google Scholar 

  47. M.F. Jarrold, J.E. Bower, and K.M. Creegan, J. Chem. Phys., 90, 3615, 1989.

    Article  ADS  Google Scholar 

  48. U. Ray and M.F. Jarrold, J. Chem. Phys., 94, 2631, 1991.

    Article  ADS  Google Scholar 

  49. M.F. Jarrold and E.C. Honea, J. Am. Chem. Soc., 114, 459, 1992.

    Article  Google Scholar 

  50. K.M. Ho, A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J. Wacker, J.L. Fye, and M.F. Jarrold, “Structures of Medium-Sized Silicon Clusters,” Nature, 392, 582, 1998.

    Article  ADS  Google Scholar 

  51. B. Liu, Ph.D thesis, Iowa State University 2001.

    Google Scholar 

  52. H. Haas, C.Z. Wang, M. Fahnle, C. Elsasser, and K.M. Ho, Phys. Rev. B, 57, 1461, 1998.

    Article  ADS  Google Scholar 

  53. H. Haas, C.Z. Wang, M. Fahnle, C. Elsasser, and K.M. Ho, “Environment-dependent tight-binding model for molybdenum,” In: P.E.A. Turchi et al. (eds.), MRS Symposium Proceedings, 491, MRS, pp. 327, 1998.

    Google Scholar 

  54. Y Waseda, K. Hirata, and M. Ohtani, High Temp. High Press., 7, 221, 1975.

    Google Scholar 

  55. F.H. Featherston and J.R. Neighbours, Phys. Rev., 130, 1324, 1963.

    Article  ADS  Google Scholar 

  56. R. Ziegler and H.-E. Schaefer, Matter Sci. Forum, 15–18, 145, 1987.

    Article  Google Scholar 

  57. B.M. Powell, P. Martel, and A.D.B. Woods, Can. J. Phys., 55, 1601, 1977.

    ADS  Google Scholar 

  58. H. Haas, C.Z. Wang, K.M. Ho, M. Fahnle, and C. Elsasser, Surf. Sci. Lett., 457, L397, 2000.

    Article  Google Scholar 

  59. Ju Li, C.Z. Wang, J.-P. Chang, W. Cai, V. Bulatov, K.M. Ho, and S. Yip, Phys. Rev. B, 70, 104113, 2004.

    Article  ADS  Google Scholar 

  60. J.H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  61. D. Deaven and K.M. Ho, Phys. Rev. Lett., 75, 288, 1995.

    Article  ADS  Google Scholar 

  62. D.M. Deaven, N. Tit, J.R. Morris, and K.M. Ho, Chem. Phys. Lett., 256, 195, 1996.

    Article  ADS  Google Scholar 

  63. C.Z. Wang, C.H. Xu, C.T. Chan, and K.M. Ho, J. Phys. Chem., 96, 7603, 1992.

    Article  Google Scholar 

  64. J.R. Chelikowsky, Phys. Rev. Lett., 67, 2970, 1991.

    Article  ADS  Google Scholar 

  65. B. Liu, Z.Y. Lu, B. Pan, C.Z. Wang, K.M. Ho, A.A. Shvartsburg, and M.F. Jarrold, J. Chem. Phys., 109, 9401, 1998.

    Article  ADS  Google Scholar 

  66. A.A. Shvartsburg, M.F. Jarrold, B. Liu, Z.Y. Lu, C.Z. Wang, and K.M. Ho, Phys. Rev. Lett., 81, 4616, 1998.

    Article  ADS  Google Scholar 

  67. Mingsheng Tang, Wencai Lu, C.Z. Wang, and K.M. Ho, Chem. Phys. Lett., 377, 413, 2003.

    Article  ADS  Google Scholar 

  68. Mingsheng Tang, C.Z. Wang, W.C. Lu, and K.M. Ho, Phys. Rev. B, (submitted).

    Google Scholar 

  69. F.C. Chuang, B. Liu, C.Z. Wang, T.L. Chan, and K.M. Ho, Phys. Rev. B, (submitted).

    Google Scholar 

  70. M. Pederson and K. Jackson, Phys. Rev. B, 43, 7312, 1991.

    Article  ADS  Google Scholar 

  71. R.M. Wentzcovitch, J.L. Martin, and P.B. Allen, Phys. Rev. B, 45, 11372, 1992.

    Article  ADS  Google Scholar 

  72. N.D. Mermin, Phys. Rev., 137, A1441, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  73. B.L. Zhang, C.Z. Wang, C.T. Chan, and K.M. Ho, Phys. Rev. B, 48, 11381, 1993.

    Article  ADS  Google Scholar 

  74. C.Z. Wang, K.M. Ho, M. Shirk, and P. Molian, Phys. Rev. Lett., 85, 4092, 2000.

    Article  ADS  Google Scholar 

  75. R.S. Lewis, E. Anders, and B.T. Draine, Nature (London), 339, 117, 1989.

    Article  ADS  Google Scholar 

  76. N.R. Greiner, D.S. Phillios, J.D. Johnson, and F. Volk, Nature (London), 333, 440, 1988.

    Article  ADS  Google Scholar 

  77. Y.K. Chang, H.H. Hsieh, W.R Pong, M.H. Tsai, RZ. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, and D.M. Bhusari, Phys. Rev. Lett., 82, 5377, 1999.

    Article  ADS  Google Scholar 

  78. J.Y. Raty, G. Galli, C. Bostedt, T.W. Van Buuren, and L.J. Terminello, Phys. Rev. Lett., 90, 037401, 2003.

    Article  ADS  Google Scholar 

  79. S. Tomita, M. Fujii, and S. Hayashi, Phys. Rev B, 66, 245424, 2002.

    Article  ADS  Google Scholar 

  80. S. Tomita, M. Fujii, S. Hayashi, and K. Yamamoto, Chem. Phys. Lett., 305, 225, 1999.

    Article  ADS  Google Scholar 

  81. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y Mal’kov, and V.M. Titov, Chem. Phys. Lett., 222, 343, 1994.

    Article  ADS  Google Scholar 

  82. G.D. Lee, C.Z. Wang, J. Yu, E. Yoon, and K.M. Ho, Phys. Rev. Lett., 91, 265701, 2003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wang, C.Z., Ho, K.M. (2005). Environment-Dependent Tight-Binding Potential Models. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_16

Download citation

Publish with us

Policies and ethics