Skip to main content

SUBWAVELENGTH-SCALE PLASMON WAVEGUIDES

  • Chapter
Surface Plasmon Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

Abstract

By the mid-17th century, numerous scientists—notably including Hooke and Gallileo—had developed transparent ground lenses and applied them in the construction of compound optical microscopes. This development revolutionized the contemporary understanding of the natural world by, for example, enabling the imaging of blood cells and microbes. Ever since this now bygone era of fantastic development of optics principles and instrumentation, the size and performance of photonic devices has been largely limited by diffraction. Photonic devices of today are generally composed of dielectric materials with modest dielectric constants, and are much bigger than the smallest electronic devices (e.g., transistors in silicon integrated circuits) for this reason.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

    Google Scholar 

  2. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles, Opt. Lett. 23, 1331 (1998)

    CAS  Google Scholar 

  3. M.L. Brongersma, J.W. Hartman, H.A. Atwater: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Phys. Rev. B 62, R16356 (2000).

    Article  CAS  Google Scholar 

  4. B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg: Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance, Phys. Rev. Lett. 84, 4721(2000).

    Article  CAS  Google Scholar 

  5. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater: Plasmonics—A route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).

    Article  CAS  Google Scholar 

  6. G. Mie: Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions, Ann. Phys. 25, 377 (1908).

    Article  CAS  Google Scholar 

  7. U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  8. C. Bohren, D. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  9. S. Linden, J. Kuhl, H. Giessen: Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction, Phys. Rev. Lett. 86, 4688 (2001)

    Article  CAS  Google Scholar 

  10. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82, 2590 (1999).

    Article  CAS  Google Scholar 

  11. S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater: Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy, Phys. Rev. B 65, 193408 (2002).

    Article  CAS  Google Scholar 

  12. S.A. Maier, P.G. Kik, H.A. Atwater: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett. 81, 1714 (2002)

    Article  CAS  Google Scholar 

  13. M.L. Brongersma, J.W. Hartman, and H.H. Atwater. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. in Molecular Electronics. Symposium, 29 Nov.–2 Dec. 1999, Boston, MA, USA. 1999: Warrendale, PA, USA : Mater. Res. Soc, 2001, This reference contains the first occurrence of the word “Plasmonics” in the title, subject, or abstract in the Inspec database.

    Google Scholar 

  14. S.A. Maier, P.G. Kik, H.A. Atwater: Optical pulse propagation in metal nanoparticle chain waveguides, Phys. Rev. B 67, 205402 (2003)

    Article  CAS  Google Scholar 

  15. D.R. Smith, N. Kroll: Negative refractive index in left-handed materials, Phys. Rev. Lett. 85, 2933 (2000)

    Article  CAS  Google Scholar 

  16. J.B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000)

    Article  CAS  Google Scholar 

  17. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2, 229 (2003)

    Article  CAS  Google Scholar 

  18. F.J. GarcĂ­a-Vidal, J.B. Pendry: Collective theory for surface enhanced Raman scattering, Phys. Rev. Lett. 77, 1163 (1996)

    Article  Google Scholar 

  19. H. Xu, J. Aizpurua, M. Käll, P. Apell: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62, 4318 (2000).

    Article  CAS  Google Scholar 

  20. A.D. McFarland, R.P. Van Duyne: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett. 3, 1057 (2003)

    Article  CAS  Google Scholar 

  21. D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei: Resonant field enhancements from metal nanoparticle arrays, Nano Lett. 4, 153 (2004).

    Article  CAS  Google Scholar 

  22. Hache, D Ricard, C. Flytzanis: Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B 3, 1647 (1986)

    Article  CAS  Google Scholar 

  23. Y. Hamanaka, K. Fukata, A. Nakamura, L.M. Liz-Marzán, P. Mulvaney: Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations, Appl. Phys. Lett 84, 4938 (2004)

    Article  CAS  Google Scholar 

  24. R.J. Gehr, R.W. Boyd: Optical properties of nanostructured optical materials, Chem. Mater. 8, 1807 (1996)

    Article  CAS  Google Scholar 

  25. Y. Shen, P.N. Prasad: Nanophotonics: a new multidisciplinary frontier, Appl. Phys. B 74, 641 (2002)

    Article  CAS  Google Scholar 

  26. D. Prot, D.B. Stout, J. Lafait, N. Pinçon, B. Palpant, S. Debrus: Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials, J. Opt. A 4, S99 (2002).

    Google Scholar 

  27. J.J. Penninkhof, A. Polman, L.A. Sweatlock, S.A. Maier, H.A. Atwater, A.M. Vredenberg, B.J. Kooi: Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass, Appl. Phys. Lett. 83, 4137 (2003)

    Article  CAS  Google Scholar 

  28. L.A. Sweatlock, S.A. Maier, H.A. Atwater, J.J. Penninkhof, A. Polman: Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles, Phys. Rev. B 71, 235408 (2005).

    Article  CAS  Google Scholar 

  29. D. Sarid: Long-range surface-plasma waves on very thin metal films, Phys. Rev. Lett. 47, 1927 (1981); A.E. Craig, G.A. Oldon, D. Sarid: Experimental observation of the long-range surface-plasmon polariton, Opt. Lett. 8, 380 (1983)

    Article  CAS  Google Scholar 

  30. J.J. Burque, G.I. Stegeman, T. Tamir: Excitation of surface-plasmon modes along thin metal-films, Phys. Rev. B 33, 5186 (1985); P. Berini: Plasmon-polariton modes guided by a metal film of finite width, Opt. Lett. 24, 15 (1999); P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures, Phys. Rev. B 61, 15 (2000); P. Berini: Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics, Opt. Express 7, 10 (2000); P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures, Phys. Rev. B 63, 12 (2001)

    Article  Google Scholar 

  31. J.A. Dionne, L.A. Sweatlock, A. Polman, H.A. Atwater: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model Dionne, Phys. Rev. B 72, 7 (2005); p. 075405

    Article  CAS  Google Scholar 

  32. V. Almeida, Q. Xu, C. Barrios, M. Lipson: Guiding and confining light in void nanostructure, Opt. Lett. 29, 1209 (2004).

    Article  Google Scholar 

  33. E.N. Economou: Surface plasmons in thin films, Phys. Rev. 182, 539 (1969).

    Article  Google Scholar 

  34. R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma: Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21, 2442 (2004).

    Article  Google Scholar 

  35. P.B. Johnson, R.W. Christy: Optical-constants of noble-metals, Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  36. E. Palik, G. Ghosh: Handbook of Optical Constants of Solids II (Academic Press, Inc., New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

ATWATER, H.A., DIONNE, J.A., SWEATLOCK, L.A. (2007). SUBWAVELENGTH-SCALE PLASMON WAVEGUIDES. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_7

Download citation

Publish with us

Policies and ethics