Skip to main content

Remote Sensing of Urban Environmental Conditions

  • Chapter
  • First Online:
Remote Sensing of Urban and Suburban Areas

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 10))

Abstract

Surface temperature and vegetation abundance are two environmental conditions that can be accurately measured from satellites. This chapter gives an overview of the following: (1) urbanization and the urban environment; (2) urban vegetation, surface temperature and public health issues; (3) techniques for urban vegetation mapping; (4) urban thermal mapping; and (5) comparison of urban vegetation and surface temperature and their impact on environmental conditions in New York City and Kuwait City.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB, Smith MO, Johnson PE (1986) Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site. J Geophys Res 91:8089–8122

    Google Scholar 

  • Adams JB, Smith MO, Gillespie AR (1989) Simple models for complex natural surfaces: A strategy for hyperspectral era of remote sensing, vol 1. In: Proceedings of IGARSS 1989, Vancouver, Canada, pp 16–21

    Google Scholar 

  • Adams JB, Sabol DE, Kapos V, Filho RA, Roberts DA, Smith MO, Gillespie AR (1995) Classification of multispectral images based on fractions of endmembers: application to land cover change in the Brazilian Amazon. Remote Sens Environ 52:137–154

    Article  Google Scholar 

  • Akbari H (2002) Shade tees reduce building energy use and CO emissions from power plants. Environ Pollut 116:S119–S126

    Article  Google Scholar 

  • Akbari H, Rosenfeld A, Taha H, Gartland L (1996) Mitigation of summer urban heat islands to save electricity and smog. In: Proceedings of the 76th annual American meteorological society meeting, Atlanta, GA, 28 Jan–2 Feb 1996. Report No. LBL-37787, Lawrence Berkeley National Laboratory, Berkeley, CA

    Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy 70(3):295–310

    Article  Google Scholar 

  • Berry BL (1990) Urbanization. In: Turner BL, Clark WC, Kates RW, Richards JF, Matthews JT, Meyer WB (eds) The Earth as transformed by human action. Cambridge University Press, Cambridge, pp 103–119

    Google Scholar 

  • Bornstein R, LeRoy M (1990) Urban barrier effects on convective and frontal thunderstorms. Preprint volume, Fourth AMS Conference on Mesoscale Processes, Boulder, CO, 25–29 June

    Google Scholar 

  • Bornstein R, Lin QL (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34(3):507–516

    Article  Google Scholar 

  • Buettner KJK, Kern CD (1965) The determination of infrared emissivities of terrestrial surfaces. J Geophys Res 70:1329–1337

    Article  Google Scholar 

  • Carlson TN, Boland FE (1978) Analysis of urban–rural canopy using a surface heat flux/temperature model. J Appl Meteorol 17:998–1013

    Article  Google Scholar 

  • Carlson TN, Augustine JA, Boland FE (1977) Potential application of satellite temperature measurements in the analysis of land use over urban areas. Bull Am Meteorol Soc 58(12):1301–1303

    Google Scholar 

  • Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements. Remote Sens Rev 9:161–173

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Schmugge TJ (1995) An interpretation of methodologies for indirect measurement of soil content water. Agric Forest Meteorol 77:191–205

    Article  Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy II J (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–77

    Article  Google Scholar 

  • Crombie MK, Gillies RR, Arvidson RE, Brookmeyer P, Well GJ, Sultan M, Harb M (1999) An application of remotely derived climatological field for risk assessment of vector-borne disease: a spatial study of filariasis prevalence in the Nile Delta, Egypt. Photogramm Eng Remote Sens 65(12):1401–1409

    Google Scholar 

  • Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155(1):80–87

    Article  Google Scholar 

  • Dash P, Gottsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice – current trends. Int J Remote Sens 23(13):2563–2594

    Article  Google Scholar 

  • Elmore AJ, Mustard JF, Manning SJ, Lobell DP (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens Environ 73:87–102

    Article  Google Scholar 

  • Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat ETM+. Remote Sens Environ 78:180–193

    Article  Google Scholar 

  • Forster B (1983) Some urban measurements from Landsat data. Photogramm Eng Remote Sens 49:1693–1707

    Google Scholar 

  • Fowler D (1985) Deposition of SO2 onto plant canopies. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation. Stanford University Press, Stanford, CA, pp 389–402

    Google Scholar 

  • Gallo KP, McNab AL, Karl TR, Brown JF, Hood JJ, Tarpley JD (1993) The use of NOAA AVHRR data for assessment of urban heat island effect. J Appl Meteorol 39:899–908

    Article  Google Scholar 

  • Gallo KP, Tarpley JD, McNab AL, Karl TR (1995) Assessment of urban heat islands: a satellite perspective. Atmos Res 37:37–43

    Article  Google Scholar 

  • Gillespie AR, Smith MO, Adams JB, Willis SC, Fischer AF, Sabol DE (1990) Interpretation of residual images: spectral mixture analysis of AVIRIS images, Owens Valley, California. In: Proceedings of second airborne visible/infrared imaging spectrometer (AVIRIS) workshop, Pasadena, CA, pp 243–270

    Google Scholar 

  • Gillies RR, Carlson TN, Cui J, Kustas WP, Humes KS (1997) Verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int J Remote Sens 18(15):3145–3166

    Article  Google Scholar 

  • Gover M (1938) Mortality during periods of excessive temperature. Public Health Rep 53:1122–1143

    Article  Google Scholar 

  • Goward SN, Cruickshanks GD, Hope AS (1985) Observed relation between thermal emission and spectral radiance of a vegetated landscape. Remote Sens Environ 18:137–146

    Article  Google Scholar 

  • Howard L (1833) The climate of London reduced from meteorological observations made in the metropolis and various places around it, 2nd edn. A. Arch, Cornhill, Longman & Co., London

    Google Scholar 

  • Jauregui E (1997) Heat island development in Mexico City. Atmos Environ 31(22):3821–3831

    Article  Google Scholar 

  • Johnson PE, Smith MO, Taylor-George S, Adams JB (1983) A semiempirical method for analysis of the reflectance spectra for binary mineral mixtures. J Geophy Res 88:3557–3561

    Article  Google Scholar 

  • Kim HH (1992) Urban heat island. Int J Remote Sens 13:2319–2336

    Article  Google Scholar 

  • Kinney PL (1999) The pulmonary effects of outdoor ozone and particle air pollution. Semin Respir Crit Care Med 20:601–607

    Article  Google Scholar 

  • Kressler F, Steinnocher K (2001) Monitoring urban development using satellite images. In: Proceedings of the second international symposium on remote sensing of urban areas, Regensburg, Germany

    Google Scholar 

  • Kwarteng AY (2002a) Remote sensing monitoring of greenery development in Kuwait City. In: Proceedings of the 3rd international symposium on remote sensing of urban areas, Istanbul, Turkey, 11–13 June, pp 337–345

    Google Scholar 

  • Kwarteng AY (2002b) The use of remote sensing imagery to monitor greenery development in Kuwait City. In: Al-Awadi NM, Taha FK (eds) New technologies for soil reclamation and desert greenery. Amherst Scientific, Amherst, MA, pp 157–177

    Google Scholar 

  • Landsat Project Science Office (2004) Landsat 7 science data user’s handbook. Goddard Space Flight Center, NASA, Washington, DC. http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html

  • Landsberg HE (1981) The urban climate. Academic, New York

    Google Scholar 

  • Li B, Avissar R (1994) The impact of spatial variability of land-surface characteristics on land-surface heat fluxes. J Climatol 7:527–537

    Article  Google Scholar 

  • Lo CP, Quattrochi DA, Luvall JC (1997) Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens 18:287–304

    Article  Google Scholar 

  • Lu D, Weng Q (2004) Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm Eng Remote Sens 70:1053–1062

    Google Scholar 

  • Miller RB, Small C (2003) Cities from space: potential applications of remote sensing in urban environmental research and policy. Environ Sci Policy 6:129–137

    Article  Google Scholar 

  • Nichol JE (1994) A GIS based approach to microclimate monitoring in Singapore’s high-rise housing estates. Photogramm Eng Remote Sens 60:1225–1232

    Google Scholar 

  • Nichol JE (1996) High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J Appl Meteorol 35:135–146

    Article  Google Scholar 

  • Nichol JE (1998) Visualisation of urban surface temperatures derived from satellite images. Int J Remote Sens 19:1639–1649

    Article  Google Scholar 

  • Nichol JE (2003) GIS and remote sensing in urban heat island in the Third World. In: Mesev V (ed) Remotely sensed cities. Taylor & Francis, New York, pp 243–264

    Google Scholar 

  • Norman JM, Divakarla M, Goel NS (1995) Algorithms for extracting information from remote thermal-IR observations of the Earth’s surface. Remote Sens Environ 51:157–168

    Article  Google Scholar 

  • Nowak DJ (1994) Air pollution removal by Chicago’s urban forest. In: McPherson EG, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: results of the Chicago Urban Forest Climate Project (NE-186). Forest Service, US Department of Agriculture, Department of Agriculture, Radnor, PA, pp 63–81

    Google Scholar 

  • Nowak DJ, Civerolo KL, Rao ST, Sistla G, Luley CJ, Crane DE (2000) A modeling study of the impact of urban trees on ozone. Atmos Environ 34(10):1601–1613

    Article  Google Scholar 

  • O’Neill BC, Balk D, Brickman M, Ezra M (2001) A guide to global population predictions. Demogr Res 4(8) www.demographic-research.org

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London/New York, pp 262–302

    Google Scholar 

  • Owen TW, Carlson TN, Gilles RR (1998) An assessment of satellite remotely sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens 19:1663–1681

    Article  Google Scholar 

  • Parker JH (1981) Use of landscaping for energy conservation. Department of Physical Sciences, Florida International University, Miami, FL

    Google Scholar 

  • Pech RP, Davies AW, Lamacraft RR, Graetz RD (1986) Calibration of Landsat data for sparsely vegetated semi-arid rangelands. Int J Remote Sens 7:1729–1750

    Article  Google Scholar 

  • Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans: Math Phys Eng Sci 360(1797):1705–1719

    Article  Google Scholar 

  • Price JC (1979) Assessment of the urban heat island effect through the use of satellite data. Mon Weather Rev 107:1554–1557

    Article  Google Scholar 

  • Price JC (1987) Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sens Environ 21:15–27

    Article  Google Scholar 

  • Price JC (1990) Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans Geosci Remote Sens 28(5):940–948

    Article  Google Scholar 

  • Rao PK (1972) Remote sensing of urban heat islands from an environmental satellite. Bull Am Meteorol Soc 53:647–648

    Google Scholar 

  • Rashed T, Weeks JR, Stow D, Fugate D (2002) Measuring temporal compositions of urban morphology through spectral mixture analysis: toward a soft approach to change analysis in crowded cities. In: Proceedings of the 3rd international symposium on remote sensing of urban areas, Istanbul, Turkey 11–13 June

    Google Scholar 

  • Roberts DA, Batista G, Pereira J, Waller E, Nelson B (1998) Change identification using multitemporal spectral mixture analysis: applications in Eastern Amazonia. In: Elvidge C, Lunetta R (eds) Remote sensing change detection: environmental monitoring applications and methods. Ann Arbor Press, Ann Arbor, MI, pp 137–161

    Google Scholar 

  • Rosenfeld AH, Akbari H, Bretz S, Fishman BL, Kurn DM, Sailor D, Taha H (1995) Mitigation of urban heat islands: materials, utility programs, updates. Energy Build 22:255–265

    Article  Google Scholar 

  • Roth M, Oke TR, Emery WJ (1989) Satellite-derived urban heat island from three coastal cities and the utilization of such data in urban climatology. Int J Remote Sens 10:1699–1720

    Article  Google Scholar 

  • Roy S, Avissar R (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys Res Lett 27:533–536

    Article  Google Scholar 

  • Singer RB (1981) Near-infrared spectral reflectance of mineral mixtures: systematic combinations of pyroxenes, olivine and iron oxides. J Geophys Res 86:7967–7982

    Article  Google Scholar 

  • Singer RB, McCord TB (1979) Mars: large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance. In: 10th lunar and planetary science conference American geophysical union, Houston, TX, pp 1835–18480

    Google Scholar 

  • Small C (2001) Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens 22(7):1305–1334

    Article  Google Scholar 

  • Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186

    Article  Google Scholar 

  • Small C (2004) The Landsat ETM+ global mixing space. Remote Sens Environ 93(1–2):1–17

    Article  Google Scholar 

  • Small C, Pozzi F, Elvidge CD (2005) Spatial Analysis of Global Urban Extent from DMSP OLS Night Lights. Remote Sens Environ 96:277-291

    Article  Google Scholar 

  • Smith WH (1984) Pollutant uptake by plants. In: Treshow M (ed) Air pollution and plant life. Wiley, New York

    Google Scholar 

  • Smith MO, Ustin SL, Adams JB, Gillespie AR (1990) Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens Environ 31:1–26

    Article  Google Scholar 

  • Taha HS, Douglas S, Haney J (1997) Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energy Build 25(2):169–177

    Article  Google Scholar 

  • Taha HS, Chang C, Akbari H (2000) Meteorological and air quality impacts of heat island mitigation measure in three US cities (Report No. LBL-44222). Lawrence Berkeley National Laboratory, Berkeley, CA

    Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing primary production. Int J Remote Sens 7:1395–1416

    Article  Google Scholar 

  • United Nations (2001) The state of the world cities 2001. United Nations Centre for Human Settlements, Nairobi, Kenya

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384

    Article  Google Scholar 

  • Vukovich FM (1983) An analysis of the ground temperature and reflectivity pattern about St. Louis, Missouri, using HCMM satellite data. J Appl Meteorol 22:560–571

    Article  Google Scholar 

  • Wagrowski DM, Hites RA (1997) Polycyclic aromatic hydrocarbon accumulation in urban, suburban and rural vegetation. Environ Sci Tech 31(1):279–282

    Article  Google Scholar 

  • Welch R (1982) Spatial resolution requirements for urban studies. Int J Remote Sens 3(2):139–146

    Article  Google Scholar 

  • Wu CS, Murray AT (2003) Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ 84(4):493–505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Kwarteng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kwarteng, A., Small, C. (2010). Remote Sensing of Urban Environmental Conditions. In: Rashed, T., Jürgens, C. (eds) Remote Sensing of Urban and Suburban Areas. Remote Sensing and Digital Image Processing, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4385-7_14

Download citation

Publish with us

Policies and ethics