Skip to main content

A SUCCESSIVE LINEAR ESTIMATOR FOR ELECTRICAL RESISTIVITY TOMOGRAPHY

  • Conference paper
Applied Hydrogeophysics

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

A dc resistivity survey is an inexpensive and widely used technique for investigation of near surface resistivity anomalies. It recently has become popular for the investigation of subsurface pollution problems (NRC, 2000). In principle, it measures the electric potential field generated by a transmission of dc electric current between electrodes implanted at the ground surface. Then, an apparent (bulk or effective) electrical resistivity for a particular set of measurement electrodes is calculated using formulas that assume homogeneous earth. Many pairs of current transmission and electric potential measurements are used to “map” subsurface electrical resistivity anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, K., 2001. Investigation of direct and indirect hydraulic property laboratory characterization methods for heterogeneous alluvial deposits: Application to the Sandia-Tech Vadose Zone infiltration test site, Masters Thesis, New Mexico Institute of Mining and Technology, Socorro, NM.

    Google Scholar 

  • Daily, W., A. Ramirez, D. LaBrecque, and J. Nitao, 1992. Electrical resistivity tomography of vadose water movement, Water Resour. Res., 28 (5), 1429–1442.

    Article  Google Scholar 

  • Dettinger, M.D., and J.L. Wilson, 1981. First-order analysis of uncertainty in numerical models of groundwater flow, 1, Mathematical development, Water Resour. Res., 17, 149–161.

    Google Scholar 

  • Ellis, R.G., and S.W. Oldenburg, 1994. The pole-pole 3-D dc resistivity inverse problem: A conjugate gradient approach, Geophys. J. Int., 119, 187–194.

    Article  Google Scholar 

  • Gavalas, G.R., P.C. Shan, and J.H. Seinfeld, 1976. Reservoir history matching by Bayesian estimation, Soc. Pet. Eng. J., 337–350.

    Google Scholar 

  • Gelhar, L.W., 1993. Stochastic Subsurface Hydrology, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Gutjahr, A., B. Bullard, S. Hatch, and D.L. Hughson, 1994. Joint conditional simulations and the spectral approach to flow modeling. Stochastic Hydrol. Hydraul., 8 (1), 79–108.

    Article  Google Scholar 

  • Guzman, A., R.E. Scheffel, and S.M. Flaherty, 2006. Geochemical Profiling of a Sulfide Leaching OperationA Case Study, SME Annual Convention, March 28–31, 2006, St. Louis, MO, USA.

    Google Scholar 

  • Hanna, S., and T.-C.J. Yeh, 1998. Estimation of co-conditional moments of transmissivity, hydraulic head, and velocity fields, Adv. Water Resour., 22 (1), 87–93.

    Article  Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis, 1984. An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 20 (7), 1003–1020.

    Google Scholar 

  • Hughson, D.L., and T.-C.J. Yeh, 2000. An inverse model for three-dimensional flow in variably saturated porous media, Water Resour. Res., 36 (4), 829–839.

    Article  Google Scholar 

  • Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, 2002. Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146.

    Article  Google Scholar 

  • Kitanidis, P.K., 1995. Quasi-linear geostatistical theory for inversing, Water Resour. Res., 31 (10), 2411–2519.

    Article  Google Scholar 

  • Kitanidis, P.K., 1997. Comment on “A reassessment of the groundwater inverse problem” by D. McLaughlin and L.R. Townley, Water Resour. Res., 33(9), 2199–2202.

    Article  Google Scholar 

  • Kitanidis, P.K., and E.G. Vomvoris, 1983. A geostatistical approach to the inverse problem in groundwater modeling and one-dimensional simulations, Water Resour. Res., 19 (3), 677–690.

    Google Scholar 

  • Li, B., and T.-C.J. Yeh, 1998. Sensitivity and moment analysis of head in variably saturated regimes, Adv. Water Resour., 21 (6), 477–485.

    Article  Google Scholar 

  • Li, Y., and D.W. Oldenburg, 1994. Inversion of 3D dc-resistivity data using an approximate inverse mapping, Geophys. J. Int., 116, 527–537.

    Article  Google Scholar 

  • Li, Y., and D.W. Oldenburg, 2000. Incorporating geological dip information into geophysical inversions, Geophysics, 65 (1), 148–157.

    Article  Google Scholar 

  • Liu, S., and T.-C.J. Yeh, 2004. An integrative approach for monitoring water movement in the vadose zone, Vadose Zone J., 3, 681–692.

    Google Scholar 

  • Liu, S., T.-C.J. Yeh, and R. Gardiner, 2002. Effectiveness of hydraulic tomography: Sandbox experiments, Water Resour. Res., 38(4), doi: 10.1029/2001WR000338.

    Google Scholar 

  • McLaughlin, D., and L. R. Townley, 1996. A reassessment of the groundwater inverse problem, Water Resour. Res., 32 (5), 1131–1161.

    Article  Google Scholar 

  • Mueller, J.L., S. Siltanen, and D. Isaacson. A direct reconstruction algorithm for electrical impedance tomography. IEEE Trans. Med. Imaging, 21 (6), 555–559.

    Google Scholar 

  • National Research Council (NRC), 2000. Seeing into the earth: noninvasive characterization of the shallow subsurface for environmental and engineering application, Board on Earth Sciences and Resources, Water Science and Technology Board, Commission on Geosciencce, Environment, and Resources, National Academy Press, Washington, DC.

    Google Scholar 

  • National Technical Working Group (NTWG), 2004. Natural and passive remediation of chlorinate solvents: Critical evaluation of science and technology targets, WSRC-TR-2003-00328, Westinghouse Savannah River Company, Savannah River Site, Aiken, SC 29808, February 19, 2004.

    Google Scholar 

  • Oldenburg, D.W., and Y. Li, 1999. Estimating depth of investigation in dc resistivity and Ip surveys, Geophysics, 64 (2), 403–416.

    Article  Google Scholar 

  • Sharma, Perm V., 1997. Environmental and Engineering Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Singha, K., and S. Gorelick, 2005. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resour. Res., 41, W05023, doi: 10.1029/2004WR003460.

    Google Scholar 

  • Sun, N.Z., 1994. Inverse Problems in Groundwater Modeling, Kluwer Academic Press, Norwell, MA.

    Google Scholar 

  • Sun, N.-Z., and W.W.-G. Yeh, 1992. A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis, Water Resour. Res., 28 (12), 3269–3280.

    Article  Google Scholar 

  • Sykes, J.F., J.L. Wilson, and R.W. Anderews, 1985. Sensitivity analysis for steady state groundwater flow using adjoint operators, Water Resour. Res., 21 (3), 359–371.

    Google Scholar 

  • Theis, C.V., 1935. The relation between lowering the piezometric surface and the rate and duration of discharge of a well using ground water storage, in 16th Annual Meeting of the Transactions of the American Geophysical Union, Part 2, 519–524.

    Google Scholar 

  • Tikhonov, A.N., and V.A. Arsenin, 1977. Solutions of Ill-posed Problems. Winston, Washington.

    Google Scholar 

  • Vanderborght, J., A. Kemna, H. Hardelauf, and H. Vereecken, 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study, Water Resour. Res., 41, W06013, doi: 10.1029/2004WR003774.

    Google Scholar 

  • Vargas-Guzman, J.A., and T.-C.J. Yeh, 1999. Sequential kriging and cokrging: Two powerful geostatistical approaches, Stochastic Environ. Res. Risk Assess., 13, 416–435.

    Article  Google Scholar 

  • Vargas-Guzmán, J.A., and T.-C.J. Yeh, 2002. The successive linear estimator: A revisit, Adv. Water Resour., 25, 773–781.

    Article  Google Scholar 

  • Vozoff, K., 1991. The magnetotelluric method, in Electromagnetic Methods in Applied Geophysics – Applications, Chapter 8, edited by M.N. Nabighia, Society of Exploration Geophysicists.

    Google Scholar 

  • White, B.S., W.E. Kohler, and L.J. Srnka, 2001. Random scattering in magnetotellurics, Geophysics, 1, 188–204.

    Article  Google Scholar 

  • Wu, C.-M., T.-C.J. Yeh, J. Zhu, T.H. Lee, N.-S. Hsu, C.-H. Chen, and A.F. Sancho, 2005. Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resour. Res., 41, W09402, doi: 10.1029/2004WR003717.

    Google Scholar 

  • Yeh, T.-C.J., 1992. Stochastic modeling of groundwater flow and solute transport in aquifers, J. Hydrol. Process., 6, 369–395.

    Article  Google Scholar 

  • Yeh, T.-C.J., 1998. Scale issues of heterogeneity in vadose-zone hydrology, in Scale Dependence and Scale Invariance in Hydrology, edited by G. Sposito, Cambridge Press, Cambridge, MA.

    Google Scholar 

  • Yeh, T.-C.J., 2005. Exploiting natural recurrent stimuli for “seeing” into groundwater basins, in Fall AGU Meeting, SF.

    Google Scholar 

  • Yeh, T.-C. J., A.L. Gutjahr, and M. Jin, 1995. An iterative cokriging-like technique for groundwater flow modeling, Groundwater, 33 (1), 33–41.

    Google Scholar 

  • Yeh, T.-C.J., and J. Šimůnek, 2002. Stochastic fusion of information for characterizing and monitoring the vadose zone, Vadose Zone J., 1, 207–221.

    Article  Google Scholar 

  • Yeh, T.-C.J., M. Jin, and S. Hanna, 1996. An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields, Water Resour. Res., 32 (1), 85–92.

    Article  Google Scholar 

  • Yeh, T.-C.J., and S.Y. Liu, 2000. Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36 (8), 2095–2105.

    Article  Google Scholar 

  • Yeh, T.-C.J., S. Liu, R. J. Glass, K. Baker, J. R. Brainard, D. Alumbaugh, and D. LaBrecque, 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology, Water Resour. Res., 38 (12), 1278, doi: 10.1029/2001WR001024.

    Article  Google Scholar 

  • Yeh, T.-C.J., and P.A. Mock, 1996. A structured approach for calibrating steady-state ground water flow models, Groundwater, 34 (3), 444–450.

    Google Scholar 

  • Yeh, T.-C.J., and J. Zhang, 1996. A geostatistical inverse method for variably saturated flow in vadose zone, Water Resour. Res., 32 (9), 2757–2766.

    Article  Google Scholar 

  • Yeh, W.W.-G., 1986. Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res., 22 (1), 95–108.

    Article  Google Scholar 

  • Zhang, J., and T.-C.J. Yeh, 1997. An iterative geostatistical inverse method for steady flow in the vadose zone, Water Resour. Res., 33 (1), 63–71.

    Article  Google Scholar 

  • Zhang, J., R.L. Mackie, and T. Madden, 1995. 3-D resistivity forward modeling and inversion using conjugate gradients, Geophysics, 60, 1313–1325.

    Article  Google Scholar 

  • Zhu, J., and T.-C.J. Yeh, 2005. Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resour. Res., 41, W07028, doi: 10.1029/2004WR003790.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Yeh, TC.J., Zhu, J., Englert, A., Guzman, A., Flaherty, S. (2006). A SUCCESSIVE LINEAR ESTIMATOR FOR ELECTRICAL RESISTIVITY TOMOGRAPHY. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_3

Download citation

Publish with us

Policies and ethics