Skip to main content

Abstract

Many stresses trigger transient increases in minor phospholipids, such as phosphatidic acid (PA) and phosphoinositides (PIs), in plants. Such changes are early events in signaling plant stress response. Lipid mediators affect cellular functions through direct interaction with proteins and/or structural effects on cell membranes. The identified lipid targets in plants include protein phosphatases, kinases, and proteins involved in membrane trafficking and cytoskeleton. The effect of lipids on signaling, intracellular trafficking, and cytoskeletal organization plays important roles in plant coping with drought and salinity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony, R. G., Henriques, R., Helfer, A., Meszaros, T., Rios, G., Testerink, C., Munnik, T., Deak, M., Koncz, C., and Bogre, L, 2004, A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis, EMBO J.23: 572–581.

    Article  PubMed  CAS  Google Scholar 

  • Bohme, K., Li, Y., Charlot, F., Grierson, C., Marrocco, K., Okada, K., Laloue, M., and Nogue, F., 2004, The Arabidopsis COW1gene encodes a phophatidylinositol transfer protein essential for root hair tip growth, Plant J.40: 686–698.

    Article  PubMed  Google Scholar 

  • Burnette, R. N., Gunesekera, B. M., and Gillaspy, G. E., 2003, An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol.132: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, K. D., 2004, Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog. Lipid Res. 43: 302–327.

    Article  PubMed  CAS  Google Scholar 

  • den Hartog, M., Verhoef, N., and Munnik, T., 2003, Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol. 132: 311–317.

    Article  Google Scholar 

  • Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., and Chen, J., 2001, Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science.294: 1942–1945.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S., Gao, L., Blanchoin, L., and Staiger C. J., 2006, Heterdimeric capping protein from arbidopsis is regulated by phosphatidic acid. Mol. Biol. Cell.4: 1946–1958.

    Article  Google Scholar 

  • Hunt, L., Mills, L. N., Pical, C., Leckie, C. P., Aitken, F. L., Kopka, J., Mueller-Roeber, B., McAinsh, M. R., Hetherington, A. M., and Gray J. E., 2003, Phospholipase C is required for the control of stomatal aperture by ABA. Plant J.34: 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J. Y., Kim Y. W., Kwak, J. M., Hwang, J. U., Young, J., Schroeder, J. I., Hwang. I., and Lee, Y., 2002, Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell. 14: 2399–2412.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis hospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 26: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Kooijman, E. E., Chupin, V., Fuller, N. L., Kozlov, M. M., de Kruijff, B., Burger, K. N., and Rand, P. R., 2005, Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry. 44:2097–2102.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Li, M., Zhang, W., Welti, R., and Wang, X., 2004, The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnol.22: 427–433.

    Article  Google Scholar 

  • Liu, K., Li, L., and Luan, S., 2005, An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels. Plant J. 42: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Loewen, C.J., Gaspar, M. L., Jesch, S. A., Delon, C., Ktistakis, N. T., Henry, S. A., and Levine, T. P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science.304: 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz, M. M., Kim, S., Delauney, A. J., and Verma, D. P., 2005, Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell.18:477–490.

    Article  PubMed  Google Scholar 

  • Meijer, H. J., and Munnik, T., 2003, Phospholipid-based signaling in plants. Annu. Rev. Plant Biol.54: 265–306.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang X., 2006, A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science.312:264–266.

    Article  PubMed  CAS  Google Scholar 

  • Monks, D. E., Aghoram, K., Courtney, P. D., DeWald, D. B., Dewey, R. E., 2001, Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell. 13: 1205–1219.

    Article  PubMed  CAS  Google Scholar 

  • Pappan K, Zheng L, Krishnamoorthi R, Wang X., 2004, Evidence for and characterization of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dβ. J. Biol. Chem.279: 47833–47833.

    Article  PubMed  CAS  Google Scholar 

  • Peterman, T. K., Ohol, Y. M., McReynolds, L. J., and Luna, E. J., 2004, Patellin 1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol. 136: 3080–3094.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, S. B., 2004. Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci. 9: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Sang, Y., Zheng, S., Li, W., Huang, B., and Wang, X., 2001, Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J. 28: 135–144.

    Article  PubMed  CAS  Google Scholar 

  • SmoleÅ„ska, G., and Kacperska, A., 1996, Inositol 1, 4, 5-trisphosphate formation in leaves of winter oilseed rape plants in response to freezing, tissue water potential and abscisic acid. Physiol Plant. 96: 692–698.

    Article  Google Scholar 

  • Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K., and Shinzaki, K., 2001, Hyperosmotic stress induces a rapid and transient increase in inositol 1, 4, 5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 42: 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Testerink, C., Dekker, H. L., Lim, Z. Y., Johns, M. K., Holmes, A.B., Koster, C.G., Ktistakis, N.T., and Munnik, T., 2004, Isolation and identification of phosphatidic acid targets from plants. Plant J. 39:527–536.

    Article  PubMed  CAS  Google Scholar 

  • Testerink, C., and Munnik, T. 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trend Plant Sci. 10: 368–375.

    Article  CAS  Google Scholar 

  • Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savoure A (2004) Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J. Biol. Chem.279:14812–14818.

    Article  PubMed  CAS  Google Scholar 

  • van Shooten, B., Testerink, C., and Munnik, T., 2006. Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim. Biophys. Acta. 1761: 151–159.

    Google Scholar 

  • Vincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikoba, T. N., Gilroy, S., and Bankaitis, V. A., 2005, A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol. 168: 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., 2004, Lipid signaling. Curr. Opin. Plant Biol. 7: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X, Devaiah, S.D., Zhang, W., and Welti, R. 2006, Signaling functions of phosphatidic acid. Prog. Lipid Research 45: 250–278.

    Article  CAS  Google Scholar 

  • Williams, M.E., Torabinejad, J, Cohick, E., Parker, K., Drake, E. J., Thompson, J. E., Hortter, M., and Dewald, D. B., 2005, Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4, 5)P2 and constitutive expression of the stress-response pathway. Plant Physiol. 138:686–700.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Fang, M., Rivas, M. P., Faulkner, A. J., Sternweis, P. C., Engebrecht, J. A., and Bankaitis, V. A., 1998, Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc. Natl. Acad. Sci. USA. 95:12346–12351.

    Article  PubMed  CAS  Google Scholar 

  • Xiong L., Lee B., Ishitani M., Lee H., Zhang C., and Zhu J-K., 2001, FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15:1971–1984.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Qin, C., Zhao, J., and Wang, X., 2004, Phospholipase Dalpha1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 101: 9508–9513.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., and Zhang W., 2006, Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, Epub ahead of print

    Google Scholar 

  • Zhang, W., Yu, L., Zhang, Y., and Wang, X., 2005, Phospholipase D in the signaling network of plant responses to abscisic acid and reactive oxygen species, Biochim. Biophys. Acta 1736:1–9.

    PubMed  CAS  Google Scholar 

  • Zhao, J., and Wang, X., 2004, Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein a subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279: 1794–1800.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, L., Shan, J., Krishnamoorthi, R., and Wang, X., 2002, Activation of plant phospholipase Dβ by phosphatidylinositol 4, 5-bisphosphate: characterization of binding site and mode of action. Biochemistry. 41: 4546–4553.

    Article  PubMed  CAS  Google Scholar 

  • Zonia, L., and Munnik, T., 2004, Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134: 813–823.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wang, X., Zhang, W., Li, W., Mishra, G. (2007). Phospholipid Signaling In Plant Response To Drought And Salt Stress. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_8

Download citation

Publish with us

Policies and ethics