Skip to main content

Target Localization using Machine Learning

  • Conference paper
Informatics in Control, Automation and Robotics II

Abstract

The miniaturization of sensors has made possible the use of these tiny components in hostile environments for monitoring purposes in the form of sensor networks. Due to the fact that these networks often work in a data centric manner, it is desirable to use machine learning techniques in data aggregation and control. In this paper we give a brief introduction to sensor networks. One of the first attempts to solve the Geolocation problem using Support Vector Regression (SVR) is then discussed. We propose a method to localize a stationary, hostile radar using the Time Difference of Arrival (TDoA) of a characteristic pulse emitted by the radar. Our proposal uses three different Unmanned Aerial Vehicles (UAVs) flying in a fixed triangular formation. The performance of the proposed SVR method is compared with a variation of the Taylor Series Method (TSM) used for solving the same problem and currently deployed by the DSTO, Australia on the Aerosonde Mark III UAVs. We conclude by proposing the application of the SVR approach to more general localization scenarios in Wireless Sensor Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, J. (1976). A divide and conquer approach to leastsquares estimation. IEEE Trans. Aerosp. Electron. Syst., 26:423–427.

    Article  Google Scholar 

  • Abel, J. and Smith, J. (1987). The spherical interpolation method for closed-form passive source localization using range difference measurements. In IEEE Proceedings of ICASSP - 1987, pages 471–474.

    Google Scholar 

  • Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002). Wireless sensor networks: A survey, 38(4):393–422.

    Google Scholar 

  • Association, A. E. W. (Feb. 14, 2006). http://www.aewa.org/library/rf bands.html.

    Google Scholar 

  • Bachrach, J. and Taylor, C. (2005). Handbook of Sensor Networks - Ed. Stojmenovic, I., chapter 9: Localization in Sensor Networks. Wiley Series on Parallel and Distributed Computing.

    Google Scholar 

  • Bahl, P. and Padmanabhan, V. N. (2000). Radar: An inbuilding rfbased user location and tracking system. In IEEE Infocom, pages 775–784.

    Google Scholar 

  • Chan, Y. T. and Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Trans. Acoust., Speech, Signal Processing, 42:1905–1915.

    Google Scholar 

  • Drake, S. (2004). Geolocation by time difference of arrival technique. Defence Science and Technology Organisation, Electronic Warfare and RADAR Division, Restricted Paper.

    Google Scholar 

  • Drake, S. P. and Dogancay, K. (2004). Geolocation by time difference of arrival using hyperbolic asymptotes. In IEEE Proceedings of ICASSP - 2004, pages 61–64.

    Google Scholar 

  • Fang, B. T. (1990). Simple solutions for hyperbolic and related position fixes. IEEE Trans. Aerosp. Electron. Syst., 26:748–753.

    Article  Google Scholar 

  • Foy, W. H. (1976). Position-location solutions by taylorseries estimation. IEEE Trans. Aerosp. Electron. Syst., AES-12:187–194.

    Article  Google Scholar 

  • Girod, L., Bychkovskiy, V., Elson, J. and Estrin, D. (2002). Locating tiny sensors in time and space: A case study. In Proceedings of the International Conference on Computer Design, pages 16–18.

    Google Scholar 

  • Group, T. (June 14, 2006). http://www.tealgroup.com.

    Google Scholar 

  • He, T., Huang, C., Blum, B. M., Stankovic, J. A. and Abdelzaher, T. F. (2006). Range-free localization schemes for large scale sensor networks.

    Google Scholar 

  • Kanchanavally, S., Zhang, C., Ordonez, R. and Layne, J. (2004). Mobile targettracking with communication delays. In 43rd IEEE Conference on Decision and Control, volume 3, pages 2899–2904.

    Google Scholar 

  • Kininmonth, S., Bainbridge, S., Atkinson, I., Gill, E., Barral, L. and Vidaud, R. (2004). Sensor networking the great barrier reef.

    Google Scholar 

  • Langendoen, K. and Reijers, N. (2003). Distributed localization in wireless sensor networks: a quantitative comparison. 34:499518.

    Google Scholar 

  • Mainwaringa, A., Szewczyk, R., Culler, D. and Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In Proc. of ACM International Workshop on Wireless Sensor Networks and Applications, pages 16–18.

    Google Scholar 

  • Martincic, F. and Schwiebert, L. (2005). Handbook of Sensor Networks - Ed. Stojmenovic, I., chapter 1: Introduction to Wireless Sensor Networking. Wiley Series on Parallel and Distributed Computing.

    Google Scholar 

  • Nguyen, X., Jordan, M. I., and Sinopoli, B. (2005). A kernel-based learning approach to adhoc sensor network localization. 1(1):124–152.

    Google Scholar 

  • Palaniswami, M. and Shilton, A. (2000). Adaptive support vector machines for regression. In Proceedings of the 9th International Conference on Neural Information Processing, Singapore, volume 2, pages 1043–1049.

    Google Scholar 

  • Shilton, A., Palaniswami, M., Ralph, D., and Tsoi, A. C. (2005). Incremental training of support vector machines. IEEE Transactions on Neural Networks, 16(1):114–131.

    Article  Google Scholar 

  • Smola, A. and Scholkopf, B. (1998). A tutorial on support vector regression. Neurocolt Technical report NC-TR-98-030, University of London, pages 748–753.

    Google Scholar 

  • Sundaram, B., Palaniswami, M., Reddy, S. and Sinickas, M. (2005). Radar localization with multiple unmanned aerial vehicles using support vector regression. In IEEE Proceedings of Third International Conference on Intelligent Sensing and Information Processing (2005-06).

    Google Scholar 

  • Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J. (2002). Least Square Support Vector Machines. World Scientific Publishing Company.

    Google Scholar 

  • Torrieri, D. J. (1984). Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst., AES-20:183–199.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Palaniswami, M., Sundaram, B., Jayavardhana, R.G., Shilton, A. (2007). Target Localization using Machine Learning. In: Filipe, J., Ferrier, JL., Cetto, J.A., Carvalho, M. (eds) Informatics in Control, Automation and Robotics II. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5626-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5626-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5625-3

  • Online ISBN: 978-1-4020-5626-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics