Skip to main content

The Concept of the Gene in Contemporary Biology: Continuity or Dissolution?

  • Chapter
The Influence of Genetics on Contemporary Thinking

Part of the book series: Logic, Epistemology, and The Unity of Science ((LEUS,volume 6))

Abstract

“Gene” is a theoretical term. Like all theoretical terms, it applies to many different domains of research. Like all theoretical terms, its meaning has dramatically changed over and over in time, and it has been defined in so many different operational ways. The problem is that the descriptive content of the various definitions of the genes that exist do not coincide. This paper provides a general evaluation of this situation. Firstly it shows that the theoretical concepts of classical genetics cannot be correlated unambiguously with the theoretical concepts of molecular genetics. In fact, there is no agreement on such simple questions as: Where are the genes? When do they exist? What are they? How many? Secondly, it provides an interpretation of why biologists continue to use the word ‘gene’. Three complementary explanations are proposed: scientific communication, economical stakes, and struggle for scientific authority among biological disciplines

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzer S (1955) Fine structure of a genetical region in bacteriophage. Proceedings of the National Academy of Sciences of USA 41:344–354.

    Article  CAS  Google Scholar 

  2. Benzer S (1959) On the topology of the genetic fine structure. Proceedings of the National Academy of Sciences of USA 47:1607–1620.

    Article  Google Scholar 

  3. Carlson EA (1991) Defining the gene: an evolving concept. Am J Hum Genet 49:475–487.

    PubMed  CAS  Google Scholar 

  4. Crick F (1979) Split genes and RNA splicing. Science 204:264–270.

    Article  PubMed  CAS  Google Scholar 

  5. Dawkins R (1976) The selfish gene. Oxford University Press, Oxford.

    Google Scholar 

  6. Dawkins R (1982) The extended phenotype. The long reach of the gene. Freeman, San Francisco

    Google Scholar 

  7. Dietrich MR (2000) The problem of the gene. In: Gros F, Gayon J, Morange M, Veuille M (eds) Comtes Rendus de l’Académie des Sciences de Paris, Sciences de la vie, Tome 323(12), Special issue 1900 Rediscovery of Mendel’s laws, pp 1139–1146.

    Google Scholar 

  8. Falk R (1984) The gene in search of an identity. Hum Gene 68:195–204.

    Article  CAS  Google Scholar 

  9. Feyerabend PK (1962) Explanation, reduction, and empiricism. Minnesota Stud. Phil. Sc. 3:28–97.

    Google Scholar 

  10. Fodor JA (1975) The language of thought. Thomas Y. Cromwell Company, New York.

    Google Scholar 

  11. Gayon J (1999) La génétique mendélienne a-t-elle été réduite par la biologie moléculaire? Biofutur 189, Mai:12

    Google Scholar 

  12. Gayon J (2004) La génétique est-elle encore une discipline? Médecine/Sciences 2 (Février):248–252.

    Google Scholar 

  13. Green MM, Green KC (1949) Crossing over between alleles of the lozenge locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences of USA 35:586–591.

    Article  CAS  Google Scholar 

  14. Gros F (1986) Les Secrets du géne. Odile Jacob, Paris.

    Google Scholar 

  15. Hull D (1972) Reduction in genetics – biology or philosophy? Philos Sci 39:491–499.

    Article  Google Scholar 

  16. Hull D (1974) Philosophy of biological science. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  17. Jacob F, Monod J (1959). Génes de structure et genes de regulation dans la synthése des proteins. C. R. Acad. Sci. Paris 249:1282–1284.

    PubMed  CAS  Google Scholar 

  18. Jacob F, Perrin D, Sanchez C, Monod J (1960) L’opéron: groupe de gènes à expression coordonnée par un opérateur. Comptes Rendus des Séances de l’Académie des. Sciences 250:1727–1729.

    CAS  Google Scholar 

  19. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of protein. J Mol biol 3:318–356.

    Article  PubMed  CAS  Google Scholar 

  20. Jacob F, Ullman A, Monod J (1964) Le promoteur, élément génétique nécessaire à l’expression d’un opéron. Comptes Rendus des Séances de l’A1cadémie des. Sciences 258:3125–3128.

    CAS  Google Scholar 

  21. Kemeny JG, Oppenheim P (1956) On reduction. Philos Stud 7:6–17.

    Article  Google Scholar 

  22. Kimbrough SO (1979) On the reduction of genetics to molecular biology. Philos Sci 46:389–406.

    Article  Google Scholar 

  23. Kitcher P (1984) (1953) And all that. A tale of two sciences. Philos Rev 93:335–373

    Article  PubMed  CAS  Google Scholar 

  24. Kuhn T (1970) The structure of scientific revolutions. The University of Chicago Press, Chicago.

    Google Scholar 

  25. Leder P (1982) The genetics of antibody diversity. Sc. Amer. 246 (May):72–83.

    Google Scholar 

  26. Müller Hill B (1996) The Lac operon. A Short History of a Genetic Paradigm. Berlin & New York, Walter de Gruyter.

    Google Scholar 

  27. Nagel E (1961) The structure of science. Harcourt, Brace & World, New York.

    Google Scholar 

  28. Pontecorvo G (1952) The genetic formulation of gene structure and action. Advances in Enzymology 13:121–149.

    Article  CAS  Google Scholar 

  29. Portin P (1993) The concept of the gene: short history and present stats. The Q Rev Biol 68:173–223.

    Article  CAS  Google Scholar 

  30. Sakano H, Maki R, Kurosawa Y, Roeder W, Tonegawa S (1980) Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286 (14 August):676–683.

    Article  Google Scholar 

  31. Sarkar S (1998) Genetics and reductionism. Cambridge University Press, Cambridge.

    Google Scholar 

  32. Singer M, Berg P (1969) Genes and genomes: a hanging perspective. University Science, Mill Valley.

    Google Scholar 

  33. Schaffner KF (1969) The Watson-Crick model and reductionism. Br J Philos Sci 20:325–348.

    Article  Google Scholar 

  34. Sterelny K, Griffiths PE (1999) Sex and death: an introduction to the philosophy of biology. Chicago University Press, Chicago.

    Google Scholar 

  35. Stotz K, Griffiths PE, Knight R (2004) How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Biomedical Sciences 35:647–673.

    Article  Google Scholar 

  36. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302 (14 April):575–581.

    Article  Google Scholar 

  37. Woodger JH (1952) tBiology and language. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gayon, J. (2007). The Concept of the Gene in Contemporary Biology: Continuity or Dissolution?. In: Fagot-Largeault, A., Rahman, S., Torres, J.M. (eds) The Influence of Genetics on Contemporary Thinking. Logic, Epistemology, and The Unity of Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5664-2_6

Download citation

Publish with us

Policies and ethics