Skip to main content

Fine-Scale Ultra-Low Velocity Zone Layering at the Core-Mantle Boundary and Superplumes

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akins, J.A., S.-N. Luo, P.D. Asimow, and T.J. Ahrens (2004) Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth’s lowermost mantle. Geophys. Res. Lett., 31(14), doi:10.1029/2004GL020237.

    Google Scholar 

  • Bataille, K., and F. Lund (1996) Strong scattering of short-period seismic waves by the core-mantle boundary and the P-diffracted wave. Geophys. Res. Lett., 23, 2413–2416.

    Article  Google Scholar 

  • Bataille, K., S. Flatté, and R.S. Wu (1990) Inhomogeneities near the core mantle boundary evidenced from scattered waves: A Review. Pure Applied Geophys., 132, 151–173.

    Article  Google Scholar 

  • Berryman, J.G. (2000) Seismic velocity decrement ratios for regions of partial melt in the lower mantle. Geophys. Res. Lett., 27, 421–424.

    Article  Google Scholar 

  • Bullen, K.E. (1949) Compressibility-pressure hypothesis and the Earth’s interior. Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 5, 355–368.

    Google Scholar 

  • Bunge, H.P., M.A. Richards, C. Lithgow-Bertelloni, J.R. Baumgardner, S.P. Grand, and B.A. Romanowicz (1998) Timescales and heterogeneous structure in geodynamic Earth models. Science, 280, 91–95.

    Article  Google Scholar 

  • Bunge, H.P., M.A. Richards, and J.R. Baumgardner (2002) Mantle-circulation models with sequential data assimilation: Inferring present-day mantle structure from plate-motion histories. Phil. Trans. R. Soc. Lond. A, 360, 2545–2567.

    Article  Google Scholar 

  • Cormier, V.F. (1999) Anisotropy of heterogeneity scale lengths in the lower mantle from PKIKP precursors. Geophy. J. Int., 136, 373–384.

    Article  Google Scholar 

  • Cormier, V.F. (2000) Dʺ as a transition in the heterogeneity spectrum of the lowermost mantle. J. Geophys. Res., 105, 16193–16205.

    Article  Google Scholar 

  • Davaille, A. (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756–760.

    Article  Google Scholar 

  • Davaille, A., F. Girard, and M. Le Bars (2002) How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203, 621–634.

    Article  Google Scholar 

  • Deschamps F., and J. Trampert (2003) Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Int., 140, 277–291.

    Article  Google Scholar 

  • Dobson, D.P., and J.P. Brodholt (2005) Subducted iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434, 371–374.

    Article  Google Scholar 

  • Duncan, R.A., and M.A. Richards (1991) Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29 (1), 31–50.

    Google Scholar 

  • Dziewonski, A.M. (1984) Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.

    Article  Google Scholar 

  • Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference Earth model. Phys. Earth and Planet. Inter., 25(4), 297–356.

    Article  Google Scholar 

  • Farnetani, C.G., and H. Samuel (2005) Beyond the thermal plume paradigm. Geophys. Res. Lett., 32, No. 7, L07311, 10.1029/2005GL022360.

    Article  Google Scholar 

  • Flatté, S.M., and R.S. Wu (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR. J. Geophys. Res., 93, 6601–6614.

    Google Scholar 

  • Ford, S.R., E.J. Garnero, and A.K. McNamara (2006) A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific. J. Geophys. Res., 111, B03306, doi:10.1029/2004JB003574.

    Article  Google Scholar 

  • Garnero, E.J. (2000) Heterogeneity of the lowermost mantle. Ann. Rev. Earth Planetary Sci., 28, 509–537.

    Article  Google Scholar 

  • Garnero, E.J. (2004) A new paradigm for Earth’s core-mantle boundary. Science, 304, doi:10.1126/science.1097849.

    Google Scholar 

  • Garnero, E.J., and D.V. Helmberger (1998) Further structural constraints and uncertainties of a thin laterally varying ultra-low velocity layer at the base of the mantle. J. Geophys. Res., 103, 12495–12509.

    Article  Google Scholar 

  • Garnero, E.J., V. Maupin, T. Lay, and M.J. Fouch (2004) Variable azimuthal anisotropy in Earth’s lowermost mantle. Science, 306(5694).

    Google Scholar 

  • Grand, S.P. (2002) Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A, 360, 2475–2491.

    Article  Google Scholar 

  • Gu, Y.J., A.M. Dziewonski, W.J. Su, and G. Ekstrom (2001) Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Research-Solid Earth, 106(B6), 11169–11199.

    Article  Google Scholar 

  • Hager, B.H., R.W. Clayton, M.A. Richards, R.P. Comer, A.M. Dziewonski (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541–546.

    Article  Google Scholar 

  • Hedlin, M.A.H., and P.M. Shearer (2000) An analysis of large scale variations in small-scale mantle heterogeneity using Global Seismic Network recordings of precursors to PKP. J. Geophys. Res., 105, 13655–13673.

    Article  Google Scholar 

  • Helmberger, D.V., and S. Ni (2005) Approximate 3D body wave synthetics for tomographic models. Bull. Seismol. Soc. Am., 95, 212–224.

    Article  Google Scholar 

  • Hernlund, J.W., C. Thomas, and P.J. Tackley (2005) A doubling of the post-perovskite phase boundary and the structure of the lowermost mantle. Nature, 434, 882–886.

    Article  Google Scholar 

  • Ishii, M., and J. Tromp (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236.

    Article  Google Scholar 

  • Ishii, M., and J. Tromp (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Plan. Int., 146, 113–124.

    Article  Google Scholar 

  • Jellinek, A.M., and M. Manga (2002) The influence of a chemical boundary layer on the fixity and lifetime of mantle plumes. Nature, 418, 760–763.

    Article  Google Scholar 

  • Jellinek, A.M., and M. Manga (2004) Links between long-lived hotspots, mantle plumes, Dʺ and plate tectonics. Rev. Geophys., 42(3), RG3002, 10.1029/2003RG000144.

    Article  Google Scholar 

  • Ji, Y., and H.C. Nataf (1998) Detection of mantle plumes in the lower mantle by diffraction tomography: Theory. Earth and Planetary Science Letters, 159(3–4), 87–98.

    Article  Google Scholar 

  • Kendall, J.-M., and P. G. Silver (1998) Investigating causes of Dʺ anisotropy. In Gurnis, M., M. Wyession, E. Knittle, and B. Buffet (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., USA, pp. 97–118.

    Google Scholar 

  • Kendall, J.-M., Seismic anisotropy in the boundary layers of the mantle. In Karato, S., A.M. Forte, R.C. Liebermannm, G. Masters, and L. Stixrude (eds.) Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, AGU, Washington, D.C., USA, pp. 133–159.

    Google Scholar 

  • Koper, K.D., and M.L. Pyle (2004) Observations of PKiKP/PcP amplitude ratios and implications for Earth structure at the boundaries of the liquid core. J. Geophys. Res., 109, B03301, doi:10.1029/2003JB002750.

    Article  Google Scholar 

  • Knittle, E., and R. Jeanloz (1989) Simulating the core-mantle boundary: An experimental study of high-pressure reactions between silicates and liquid iron. Geophys. Res. Lett., 16, 609–612.

    Google Scholar 

  • Knittle, E., and R. Jeanloz (1991) Earth’s core-mantle boundary-Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.

    Article  Google Scholar 

  • Kuo, C., and B. Romanowicz (2002) On the resolution of density anomalies in the Earth’s mantle using spectral fitting of normal mode data. Geophys. J. Inter., 150, 162–179.

    Article  Google Scholar 

  • Lay, T., E.J. Garnero, Q. Williams, L. Kellogg, and M.E. Wysession (1998) Seismic wave anisotropy in the Dʺ region and its implications, In Gurnis, M., M. Wysession, E. Knittle, and B. Buffett (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., U.S.A., pp. 299–318.

    Google Scholar 

  • Lay, T., and E.J. Garnero (2004) Core-mantle boundary structures and processes. In Sparks, R.S.J., and C.J. Hawkesworth (eds.) The State of the Planet: Frontiers and Challenges in Geophysics, Geophysical Monograph 150, IUGG Volume 19, doi:10.1029/150GM04.

    Google Scholar 

  • Lay, T., E.J. Garnero, and Q. Williams (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Int., 146, 441–467.

    Article  Google Scholar 

  • Lay, T., D. Heinz, M. Ishii, S.-H. Shim, J. Tsuchiya, T. Tsuchiya, R. Wentzcovitch, and D.A. Yuen (2005) Multidisciplinary impact of the deep mantle phase transition in perovskite structure. Eos Trans., 86, No. 1, 1–15.

    Google Scholar 

  • Lithgow-Bertelloni, C., and M.A. Richards (1998) Dynamics of cenozoic and mesozoic plate motions. Rev. Geophys., 36, 27–78.

    Article  Google Scholar 

  • Manga, M., and R. Jeanloz (1996) Implications of a metal-bearing chemical boundary layer in Dʺ for mantle dynamics. Geophys. Res. Lett., 23, 3091–3094.

    Article  Google Scholar 

  • Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.

    Google Scholar 

  • Maruyama, S., M. Kumazawa, and S. Kawakami (1994) To wards a new paradigm on the Earth’s dynamics. J. Geol. Soc. Jpn., 100, 1–3.

    Google Scholar 

  • Masters, G., and D. Gubbins (2003) On the resolution of density within the Earth. Phys. Earth Planet. Int., 140, 159–167.

    Article  Google Scholar 

  • Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S. (ed.) Earth’s Deep Interior, AGU Monograph, 117, pp. 63–87.

    Google Scholar 

  • McNamara, A.K., and S. Zhong (2004a) Thermochemical structures within a spherical mantle: Super-plumes or piles? J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.

    Article  Google Scholar 

  • McNamara, A.K, and S. Zhong (2004b) The influence of thermochemical convection on the fixity of mantle plumes. Earth and Planet. Sci. Lett., 222, 485–500.

    Article  Google Scholar 

  • McNamara, A.K., and S. Zhong (2005) Thermochemical Piles under Africa and the Pacific. Nature, 437, 1136–1139.

    Article  Google Scholar 

  • Mégnin, C., and B. Romanowicz (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, surface, and higher-mode waveforms. Geophys. J. Int., 143, 709–728.

    Article  Google Scholar 

  • Montelli, R., G. Nolet, F. Dahlen, G. Masters, E. Engdahl, and S. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.

    Article  Google Scholar 

  • Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.

    Article  Google Scholar 

  • Morgan, W.J. (1972) Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull., 56(2), 203–213.

    Google Scholar 

  • Mori, J., and D.V. Helmberger (1995) Localized boundary layer below the mid-Pacific velocity anomaly from a PcP precursor. J. Geophys. Res., 100, 20359–20365.

    Article  Google Scholar 

  • Muller R.A. (2002) Avalanches at the core-mantle boundary. Geophys. Res. Lett., 29(19), 1935, doi:10.1029/2002GL015938.

    Article  Google Scholar 

  • Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.

    Article  Google Scholar 

  • Ni, S., E. Tan, M. Gurnis, and D.V. Helmberger (2002) Sharp sides to the African Superplume. Science, 296, 1850–1852.

    Article  Google Scholar 

  • Ni, S., and D.V. Helmberger (2003a) Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res., 108, No. B2, 2094.

    Article  Google Scholar 

  • Ni, S., and D.V. Helmberger (2003b) Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth. Earth Planet. Sci. Lett., 206, 119–131.

    Article  Google Scholar 

  • Niu, F., and L. Wen (2001) Strong seismic scatterers near the core-mantle boundary west of Mexico. Geophys. Res. Lett., 28, 3557–3560.

    Article  Google Scholar 

  • Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a post-pero vskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.

    Article  Google Scholar 

  • Olson, P., and C. Kincaid (1991) Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. J. Geophys. Res., 96(B3), 4347–4354.

    Google Scholar 

  • Poirier, J.-P. (1993) Core-infiltrated mantle and the nature of the Dʺ layer. J. Geomag. Geoelectr., 45, 1221–1227.

    Google Scholar 

  • Ritsema, J., and H.J. van Heijst (2000) Seismic imaging of structural heterogeneity in Earth’s mantle: Evidence for large-scale mantle flow. Science Progress, 83, 243–259.

    Google Scholar 

  • Rokosky, J.M., T. Lay, E.J. Garnero, and S.A. Russell (2004) High resolution investigation of shear-wave anisotropy in Dʺ beneath the Cocos Plate. Geophys. Res. Lett., 31, L07605, doi: 10.1029/2003GL018902.

    Article  Google Scholar 

  • Romanowicz, B. (1991) Seismic tomography of the Earth’s mantle. Ann. Rev. Earth Planet. Sci., 19, 77–99.

    Article  Google Scholar 

  • Rondenay, S., and K.M. Fischer (2003) Constraints on localized core-mantle boundary structure from multichannel, broadband SKS coda analysis. J. Geophys. Res., 108(B11), 2537, doi:10.1029/2003JB002518.

    Article  Google Scholar 

  • Rost, S., and J. Revenaugh (2001) Seismic detection of rigid zones at the top of the core. Science, 294, 1911–1914.

    Article  Google Scholar 

  • Rost, S., and J. Revenaugh (2003) Small-scale ultra-low velocity zone structure resolved by ScP. J. Geophys. Res. Solid Earth, 108, 10.1028/2001JB001627.

    Google Scholar 

  • Rost, S., and E.J. Garnero (2006) Detection of an ultra-low velocity zone at the CMB using diffracted PKKPab waves. J. Geophys. Res., 111, B07309, doi:10.1029/2005JB003850.

    Article  Google Scholar 

  • Rost, S., E.J. Garnero, Q. Williams, and M. Manga (2005) Seismic constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666–669 (doi:10.1038/nature03620).

    Article  Google Scholar 

  • Saltzer, R.L., E. Stutzmann, and R.D. Van der Hilst (2004) Poisson’s ration beneath Alaska from the surface to the core-mantle boundary. J. Geophys. Res., 109, doi:10.1029/2003JB002712.

    Google Scholar 

  • Samuel, H., C.G. Farnetani, and D. Andrault (2005) Heterogeneous lowermost mantle: Compositional constraints and seismological observables. In Bass, J., R.D. van der Hilst, J. Matas, and J. Trampert (eds.) Structure Evolution and Composition of the Earth’s Mantle, AGU Geophysical Monograph.

    Google Scholar 

  • Shearer, P.M., M.A.H. Hedlin, and P.S. Earle (1998) PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core. In Gurnis, M., M.E. Wysession, E. Knittle, B.A. Buffett (eds.) The Core-Mantle Boundary Region, Washington D.C, American Geophysical Union, pp. 37–55.

    Google Scholar 

  • Shim, S.-H., T.S. Duffy, R. Jeanloz, and G. Shen (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys. Res. Lett., 31, L10603, doi:10.1029/2004GL019639.

    Article  Google Scholar 

  • Song, X., and T.J. Ahrens (1994) Pressure-temperature range of reactions between liquid iron in the outer core and mantle silicates. Geophys. Res. Lett., 21, 153–156.

    Article  Google Scholar 

  • Steinberger, B. (2000) Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res., 105, 11127–11152.

    Article  Google Scholar 

  • Su, W.J., and A.M. Dziewonski (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Int., 100, 135–156.

    Article  Google Scholar 

  • Tackley, P.J. (1998) Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: Dʺ? In Gurnis, M., M.E. Wysession, E. Knittle, and B.A. Buffett (eds.) The Core-Mantle Boundary Region, American Geophysical Union, Washington, D.C., USA, pp. 231–253.

    Google Scholar 

  • Tackley, P. (2000) Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288, 2002–2007.

    Article  Google Scholar 

  • Tackley, P.J. (2002) Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosys., 3(4), 1024, doi:10.1029/2001GC000167.

    Article  Google Scholar 

  • Thomas, C., E.J. Garnero, and T. Lay (2004) High-resolution imaging of lowermost mantle structure under the Cocos Plate. J. Geophys. Res., 109, doi:10.1029/2004JB003013.

    Google Scholar 

  • Thorne, M.S., and E.J. Garnero (2004) Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res., 109, B08301, doi:10.1029/2004JB003010.

    Article  Google Scholar 

  • Thorne, M., E.J. Garnero, and S. Grand (2004) Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Int., 146, 47–63.

    Article  Google Scholar 

  • To, A., T.B. Romanowicz, Y. Capdeville, and N. Takeuchi (2005) 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth Planet. Sci. Lett., 233, 137–153.

    Article  Google Scholar 

  • Trampert, J., F. Deschamps, J. Resovsky, and D.A. Yuen (2004) Probabilistic tomography maps chemical heterogenities throughout the mantle. Science, 306, 853–856.

    Article  Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004) Elasticity of post-perovskite MgSiO3. Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.

    Article  Google Scholar 

  • van der Hilst, R.D., and H. Kárason (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: Toward a hybrid convection model. Science, 283, 1885–1888.

    Article  Google Scholar 

  • Van Thienen, P., J. van Summeren, R.D. van der Hilst, A.P. van den Berg, and N.J. Vlaar (2005) Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In van der Hilst, R.D., J. Bass, J. Matas, and J. Trampert (eds.) The Structure, Evolution and Composition of Earth’s Mantle, AGU, Geophysical Monograph, pp. 117–136.

    Google Scholar 

  • Vidale, J.E., and M.A.H. Hedlin (1998) Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature, 391, 682–685.

    Article  Google Scholar 

  • Wang, Y., and L. Wen (2004) Mapping the geometry and geographic distribution of a very-low velocity province at the base of the Earth’s mantle. J. Geophys. Res., 109, B10305, doi:10.1029/2003JB002674.

    Article  Google Scholar 

  • Wen, L. (2001) Seismic evidence for a rapidly-varying compositional anomaly at the base of the Earth’s mantle beneath the Indian ocean. Earth Planet. Sci. Lett., 194, 83–95.

    Article  Google Scholar 

  • Wen, L., and D.V. Helmberger (1998a) Ultra-low velocity zones near the core-mantle boundary from broadb and PKP precursors. Science, 279, 1701–1703.

    Article  Google Scholar 

  • Wen, L., and D.V. Helmberger (1998b) A2D P-SV hybrid method and its application to localized structures near the core-mantle boundary. J. Geophys. Res., 103, 17901–17918.

    Article  Google Scholar 

  • Williams, Q., and E.J. Garnero (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.

    Article  Google Scholar 

  • Williams, Q., J.S. Revenaugh, and E.J. Garnero (1998) A correlation between ultra-low basal velocities in the mantle and hot spots. Science, 281, 546–549.

    Article  Google Scholar 

  • Wysession, M.E. (1996) Imaging cold rock at the base of the mantle: The sometimes fate of Slabs? In Bebout, G.E., D. Scholl, S. Kirby, and J.P. Platt (eds.) Subduction: Top to Bottom, American Geophysical Union, Washington, D.C., USA, pp. 369–384.

    Google Scholar 

  • Wysession, M., T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, R. Jeanloz, and L. Kellogg (1998) The Dʺ discontinuity and its implications. In Gurnis, M., M. Wysession, E. Knittle, and B. Buffett (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., U.S.A., pp. 273–298.

    Google Scholar 

  • Wysession, M.E., A. Langenhorst, M.J. Fouch, K.M. Fischer, G.I. Al-Eqabi, P.J. Shore, and T.J. Clarke (1999) Lateral variations in compressional/shear velocities at the base of the mantle. Science, 284, 120–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Garnero, E., Thorne, M., McNamara, A., Rost, S. (2007). Fine-Scale Ultra-Low Velocity Zone Layering at the Core-Mantle Boundary and Superplumes. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_6

Download citation

Publish with us

Policies and ethics