Skip to main content

Invariants of Measure and Category

  • Chapter
  • First Online:
Handbook of Set Theory

Abstract

The purpose of this chapter is to discuss various results concerning the relationship between measure and category. The focus is on set-theoretic properties of the associated ideals, particularly, their cardinal characteristics. The key notion is the Tukey reducibility which compares partial orders with respect to their cofinality type. We define small sets of reals associated with cardinal invariants and discuss their properties. We present a number of ZFC results and forcing-like constructions of various small sets of reals assuming continuum hypothesis. We also present a proof of the result of Shelah that the smallest cardinality of a family of Lebesgue measure zero sets covering the real line may have countable cofinality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. U. Abraham. Proper forcing. Chapter 5 in this Handbook. 10.1007/978-1-4020-5764-9_6.

  2. Joan Bagaria and Haim Judah. Amoeba forcing, Suslin absoluteness and additivity of measure. In Haim Judah, Winfried Just, and W. Hugh Woodin, editors, Set Theory of the Continuum, pages 155–173. MSRI Proceedings. Springer, Berlin, 1992.

    Google Scholar 

  3. Tomek Bartoszyński. Additivity of measure implies additivity of category. Transactions of the American Mathematical Society, 281(1):209–213, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  4. Tomek Bartoszyński. Combinatorial aspects of measure and category. Fundamenta Mathematicae, 127(3):225–239, 1987.

    MATH  MathSciNet  Google Scholar 

  5. Tomek Bartoszyński. On covering of real line by null sets. Pacific Journal of Mathematics, 131(1):1–12, 1988.

    MATH  MathSciNet  Google Scholar 

  6. Tomek Bartoszyński and Haim Judah. On the cofinality of the smallest covering of the real line by meager sets. The Journal of Symbolic Logic, 54(3):828–832, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. Tomek Bartoszyński and Haim Judah. On the smallest covering of the real line by meager sets II. Proceedings of the American Mathematical Society, 123(6):1879–1885, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line. A.K. Peters, Wellesley, 1995.

    MATH  Google Scholar 

  9. Tomek Bartoszyński, Haim Judah, and Saharon Shelah. The Cichoń diagram. The Journal of Symbolic Logic, 58(2):401–423, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. Tomek Bartoszyński, Martin Goldstern, Haim Judah, and Saharon Shelah. All meager filters may be null. Proceedings of the American Mathematical Society, 117(2):515–521, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Blass. Combinatorial cardinal characteristics of the continuum. Chapter 6 in this Handbook. 10.1007/978-1-4020-5764-9_7.

  12. Andreas Blass. Reductions between cardinal characteristics of the continuum. In Tomek Bartoszyński and Marion Scheepers, editors, Set Theory: BEST I–III, volume 192 of Contemporary Mathematics, pages 31–50. American Mathematical Society, Providence, 1996.

    Google Scholar 

  13. Jörg Brendle. Generic constructions of small sets of reals. Topology and Its Applications, 71(2):125–147, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. Jens P.R. Christensen. Necessary and sufficient conditions for the measurability of certain sets of closed subsets. Mathematische Annalen, 200:189–193, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  15. Jacek Cichoń. On two-cardinal properties of ideals. Transactions of the American Mathematical Society, 314(2):693–708, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. Krzysztof Ciesielski and Janusz Pawlikowski. The covering property axiom, CPA. A combinatorial core of the iterated perfect set model, volume 164 of Cambridge Tracts in Mathematics. Cambridge University Press, London, 2004.

    MATH  Google Scholar 

  17. David H. Fremlin. Cichoń’s diagram, 1984. Presented at the Séminaire Initiation à l’Analyse, G. Choquet, M. Rogalski, J. Saint Raymond, at the Université Pierre et Marie Curie, Paris, 23e année.

    Google Scholar 

  18. David H. Fremlin. Families of compact sets and Tukey’s ordering. Atti del Seminario Matematico e Fisico dell’Universita di Modena, 39(1):29–50, 1991.

    MATH  MathSciNet  Google Scholar 

  19. David H. Fremlin. The partial orderings in measure theory and Tukey ordering. Note di Matematica, XI:177–214, 1991.

    MathSciNet  Google Scholar 

  20. David H. Fremlin and Arnold W. Miller. On some properties of Hurewicz, Menger, and Rothberger. Fundamenta Mathematicae, 129(1):17–33, 1988.

    MATH  MathSciNet  Google Scholar 

  21. Fred Galvin and Arnold W. Miller. γ-Sets and other singular sets of real numbers. Topology and Its Applications, 17(2):145–155, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  22. Martin Goldstern. Tools for your forcing constructions. In Haim Judah, editor, Set Theory of the Reals, pages 305–360. Israel Mathematical Conference Proceedings. American Mathematical Society, Providence, 1992.

    Google Scholar 

  23. Michael Hrušák. Rendevous with madness. PhD thesis, York University, 1999.

    Google Scholar 

  24. John R. Isbell. The category of cofinal types II. Transactions of the American Mathematical Society, 116:394–416, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  25. Haim Judah and Miroslav Repický. Amoeba reals. The Journal of Symbolic Logic, 60(4):1168–1185, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  26. Haim Judah and Miroslav Repický. No random reals in countable support iterations. Israel Journal of Mathematics, 92(1–3):349–359, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  27. Haim Judah and Saharon Shelah. The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing). The Journal of Symbolic Logic, 55(3):909–927, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  28. Winfried Just. A weak version of AT which follows from OCA. In Haim Judah, Winfried Just, and W. Hugh Woodin, editors, Set Theory of the Continuum. MSRI Proceedings. Springer, Berlin, 1992.

    Google Scholar 

  29. Alexander Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics, pages 281–291. Springer, Berlin, 1995.

    MATH  Google Scholar 

  30. Alexander Kechris, Alain Louveau, and W. Hugh Woodin. The structure of σ-ideals of compact sets. Transactions of the American Mathematical Society, 301:263–288, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  31. Richard Laver. On the consistency of Borel’s conjecture. Acta Mathematica, 137(3–4):151–169, 1976.

    Article  MathSciNet  Google Scholar 

  32. Alain Louveau and Boban Velickovic. Analytic ideals and cofinal types. Annals of Pure and Applied Logic, 99:171–195, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  33. Arnold W. Miller. Some properties of measure and category. Transactions of the American Mathematical Society, 266(1):93–114, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  34. Arnold W. Miller. The Baire category theorem and cardinals of countable cofinality. The Journal of Symbolic Logic, 47(2):275–288, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  35. Justin Moore, Michael Hrusak, and Mirna Dzamonja. Parametrized diamond principles. Transactions of the American Mathematical Society, 356:2281–2306, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  36. John C. Oxtoby. Measure and Category, volume 2 of Graduate Texts in Mathematics. Springer, Berlin, 1980.

    MATH  Google Scholar 

  37. Janusz Pawlikowski. Lebesgue measurability implies Baire property. Bulletin des Sciences Mathematiques. 2e Serie, 109(3):321–324, 1985.

    MATH  MathSciNet  Google Scholar 

  38. Janusz Pawlikowski. Laver’s forcing and outer measure. In Tomek Bartoszyński and Marion Scheepers, editors, Set Theory: BEST I–III, volume 192 of Contemporary Mathematics. American Mathematical Society, Providence, 1996.

    Google Scholar 

  39. Janusz Pawlikowski and Ireneusz Recław. Parametrized Cichoń’s diagram and small sets. Fundamenta Mathematicae, 147(2):135–155, 1995.

    MATH  MathSciNet  Google Scholar 

  40. Jean Raisonnier and Jacques Stern. The strength of measurability hypotheses. Israel Journal of Mathematics, 50(4):337–349, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  41. Jean Saint Raymond. Caractérisations D’espaces Polonais. D’apres des travaux recents de J.P.R. Christensen et D. Preiss. In Seminaire Choquet, 11–12e anneés (1971–1973). Secrétariat Mathématique, Paris, 1973.

    Google Scholar 

  42. Ireneusz Recław. Cichoń’s diagram and continuum hypothesis. Preprint.

    Google Scholar 

  43. Miroslav Repický. Properties of forcing preserved by finite support iterations. Commentationes Mathematicae Universitatis Carolinae, 32:95–103, 1991.

    MATH  MathSciNet  Google Scholar 

  44. Andrzej Rosłanowski and Saharon Shelah. Norms on possibilities I: Forcing with trees and creatures. Memoirs of the American Mathematical Society, 141(671), 1999.

    Google Scholar 

  45. Fritz Rothberger. Eine Aquivalenz zwishen der Kontinuumhypothese under der Existenz der Lusinschen und Sierpińschishen Mengen. Fundamenta Mathematicae, 30:215–217, 1938.

    Google Scholar 

  46. Saharon Shelah. Proper Forcing, volume 940 of Lecture Notes in Mathematics. Springer, Berlin, 1982.

    MATH  Google Scholar 

  47. Saharon Shelah. Can you take Solovay inaccessible away? Israel Journal of Mathematics, 48:1–47, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  48. Saharon Shelah. Proper and Improper Forcing. Perspectives in Logic. Springer, Berlin, 1998.

    MATH  Google Scholar 

  49. Saharon Shelah. Covering of the null ideal may have countable cofinality. Fundamenta Mathematicae, 166(1–2):109–136, 2000.

    MATH  MathSciNet  Google Scholar 

  50. Slawomir Solecki. Analytic ideals. The Bulletin of Symbolic Logic, 2(3):339–348, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  51. Slawomir Solecki. Analytic ideals and their applications. Annals of Pure and Applied Logic, 99:51–72, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  52. Robert M. Solovay. A model of set theory in which every set of reals is Lebesgue measurable. Annals of Mathematics, 92(2):1–56, 1970.

    Article  MathSciNet  Google Scholar 

  53. Otmar Spinas. Partition numbers. Annals of Pure and Applied Logic, 90:243–262, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  54. Michel Talagrand. Compacts de fonctions mesurables et filtres non mesurables. Studia Mathematica, 67(1):13–43, 1980.

    MATH  MathSciNet  Google Scholar 

  55. Stevo Todorcevic. Every analytic p-ideal is Tukey reducible to â„“ 1. Note of June 1996.

    Google Scholar 

  56. Stevo Todorcevic. Analytic gaps. Fundamenta Mathematicae, 147:55–66, 1995.

    Google Scholar 

  57. John K. Truss. Sets having calibre ℵ 1. In Logic Colloquium ’76 (Oxford, 1976), volume 87 of Studies in Logic and the Foundations of Mathematics, pages 595–612. North-Holland, Amsterdam, 1977.

    Google Scholar 

  58. John K. Truss. Connections between different amoeba algebras. Fundamenta Mathematicae, 130(2):137–155, 1988.

    MATH  MathSciNet  Google Scholar 

  59. John W. Tukey. Convergence and Uniformity in Topology. Annals of Mathematics Studies. Princeton University Press, Princeton, 1940.

    MATH  Google Scholar 

  60. Peter Vojtáš. Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis. In Haim Judah, editor, Set Theory of the Reals, pages 619–643. Israel Mathematical Conference Proceedings. Bar Ilan University, Bar Ilan, 1992.

    Google Scholar 

  61. Jindrich Zapletal. Isolating cardinal invariants. Journal of Mathematical Logic, 3(1):143–162, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  62. Jindrich Zapletal. Descriptive set theory and definable forcing. Memoirs of the American Mathematical Society, 167(793), 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomek Bartoszynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bartoszynski, T. (2010). Invariants of Measure and Category. In: Foreman, M., Kanamori, A. (eds) Handbook of Set Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5764-9_8

Download citation

Publish with us

Policies and ethics