Skip to main content

Part of the book series: Reviews: Methods and Technologies in Fish Biology and Fisheries ((REME,volume 11))

Abstract

Our understanding of the ecological dynamics of early life stages of marine fish has frequently been referred to as the great unknown “black box” (Sale 1980). Fortunately, however, Pannella’s (1971) discovery several decades ago that the otoliths of marine fish record age and growth information on a daily basis provided a critical tool for us to begin propping open the box lid. Increasing research and much technological advancement since then have enabled scientists to obtain accurate and detailed measurements of multiple early life history traits from the otoliths of young fish. Use of the wealth of data contained in the microstructure of fish otoliths is one of the most significant advantages that studies of fish populations have over similar studies of invertebrates. Age data from individuals can be used to examine patterns of larval dispersal, recruitment dynamics, early growth and survivorship, and selective mortality in addition to the more familiar age-specific growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrenholz DW (2000) Periodicity of growth increment formation in otoliths of juvenile gray snapper (Lutjanus griseus) and lane snapper (Lutjanus synagris). J Elisha Mitchell Sci Soc 116:251–259

    Google Scholar 

  • Allain G, Petitgas P, Grellier P, Lazure P (2003) The selection process from larval to juvenile stages of anchovy (Engraulis encrasicolus) in the Bay of Biscay investigated by Lagrangian simulations and comparative otolith growth. Fish Oceanogr 12:407–418

    Article  Google Scholar 

  • Anderson JT (1988) A review of size dependent survival during pre-recruit stages of fish in relation to recruitment. J NW Atl Fish Sci 8:55–66

    Google Scholar 

  • Arai T, Limbong D, Tsukamoto K (2000) Validation of otolith daily increments in the tropical eel Anguilla celebesensis. Can J Zool 78:1078–1084

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Baumann H, Peck MA, Herrmann J-P (2005) Short-term decoupling of otolith and somatic growth induced by food level changes in postlarval Baltic sprat, Sprattus sprattus. Mar Freshwater Res 56:539–547

    Article  Google Scholar 

  • Begg GA, Brown RW (2000) Stock identification of haddock Melogrammus aeglefinus on Georges Bank based on otolith shape analysis. Tran Am Fish Soc 129:935–945

    Article  Google Scholar 

  • Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525

    Article  Google Scholar 

  • Brogan MW (1994) Distribution and retention of larval fishes near reefs in the Gulf of California. Mar Ecol Prog Ser 115:1–13

    Article  Google Scholar 

  • Brothers EB (1987) Methodological approaches to the examination of otoliths in aging studies. In: Hall GE (Ed) Age and growth of fish. Iowa State University Press, Des Moines, Iowa, pp 319–330

    Google Scholar 

  • Brothers EB (1990) Otolith marking. Am Fish Soc Symp 7:183–202

    Google Scholar 

  • Campana SE (1984) Microstructural growth patterns in the otoliths of larval and juvenile starry flounder, Platichthys stellatus. Can J Zool 62:1507–1512

    Article  Google Scholar 

  • Campana SE (1990) How reliable are back calculations based on otoliths? Can J Fish Aquat Sci 47:2219– 2227

    Article  Google Scholar 

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–24

    Article  Google Scholar 

  • Campana SE, Casselman JM (1993) Stock discrimination using otolith shape analysis. Can J Fish Aquat Sci 50:1062–1083

    Article  Google Scholar 

  • Campana SE, Jones CM (1992) Analysis of otolith microstructure data. Can J Fish Aquat Sci 117:73–100

    Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1027–1029

    Article  Google Scholar 

  • Cermeno P, Uriarte A, de Murguia AM, Morales-Nin B (2003) Validation of daily increment formation in otoliths of juvenile and adult European anchovy. J Fish Biol 62:679–691

    Article  Google Scholar 

  • Chambers RC, Miller TJ (1995) Evaluating fish growth by means of otolith increment analysis: special properties of individual-level longitudinal data. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, pp 155–175

    Google Scholar 

  • Choat JH, Doherty PJ, Kerrigan BA, Leis JM (1993) A comparison of towed nets, purse seine, and lightaggregation devices for sampling larvae and pelagic juveniles of coral reef fishes. Fish Bull US 91:195–209

    Google Scholar 

  • Correia AT, Antunes C, Coimbra J (2002) Aspects of the early life history of the European conger eel (Conger conger) inferred from the otolith microstructure of metamorphic larvae. Mar Biol 140:165–173

    Article  Google Scholar 

  • Cowen RK (1991) Variation in the planktonic larval duration of the temperate wrasse Semicossyphus pulcher. Mar Ecol Prog Ser 69:9–15

    Article  Google Scholar 

  • Cowen RK, Castro LR (1994) Relation of coral-reef fish larval distributions to island scale circulation around Barbados, West Indies. Bull Mar Sci 54:228–244

    Google Scholar 

  • DeVries DA, Grime CB, Prager MH (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fish Res 57:51–62

    Article  Google Scholar 

  • Doherty PJ (1987) Light traps: selective but useful devices for quantifying the distributions and abundance of larval fishes. Bull Mar Sci 41:423–431

    Google Scholar 

  • Doherty PJ, McIlwain JL (1996) Monitoring larval fluxes through the surf zones of Australian coral reefs. Mar Freshwater Res 47:383–390

    Article  Google Scholar 

  • Dufour V, Galzin R (1993) Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar Ecol Prog Ser 102:143–152

    Article  Google Scholar 

  • Ekau W, Blay J (2000) Validation of daily increment deposition and early development in the otoliths of Sarotherodon melanotheron. J Fish Biol 57:1539–1549

    Article  Google Scholar 

  • Fisher R, Bellwood DR (2002) A light trap design for stratum-specific sampling of reef fish larvae. J Exp Mar Biol Ecol 269:27–37

    Article  Google Scholar 

  • Fives JM, Warlen SM, Hoss DE (1986) Aging and growth of larval bay anchovy Anchoa mitchilli from the Newport River Estuary, North Carolina, USA. Estuaries 94:362–367

    Article  Google Scholar 

  • Folkvord A, Mosegard H (2002) Some uses of individual age data. A. Growth and growth analysis. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 146–166

    Google Scholar 

  • Fowler AJ (1989) Description, interpretation and use of the microstructure of otoliths from juvenile butterflyfishes (Family Chaetodontidae). Mar Biol 102:167–182

    Article  Google Scholar 

  • Fowler AJ, Black KP, Jenkins GP (2000) Determination of spawning areas and larval advection pathways for King George whiting in southeastern Australia using otolith microstructure and hydrodynamic modelling I. South Australia. Mar Ecol Prog Ser 199:243–254

    Article  Google Scholar 

  • Francis RICC, Campana SE (2003) Inferring age from otolith measurements: a review and a new approach. Can J Fish Aquat Sci 61:1269–1284

    Article  Google Scholar 

  • Gagliano M, McCormick MI (2004) Feeding history influences otolith shape in tropical fish. Mar Ecol Prog Ser 278:291–296

    Article  Google Scholar 

  • Gagliano M, McCormick M, Meekan MG (2007) Against all odds: ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish Proc R Soc B 274:1575–1582

    Article  PubMed  Google Scholar 

  • Gartner JV, Jr (1991) Life histories of three species of Lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. I. Morphological and microstructural analysis of sagittal otoliths. Mar Biol 111:11–20

    Google Scholar 

  • Geffen AJ (1992) Validation of otolith increment deposition rate. Can Spec Publ Fish Aquat Sci 117:101–113

    Google Scholar 

  • Geffen AJ, de Pontual H, Wright PJ, Mosgaard H (2002) Sclerochronological studies B. Life history events. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 99–104

    Google Scholar 

  • Govoni JJ, Laban EH, Hare JA (2003) The early life history of swordfish (Xiphias gladius) in the western North Atlantic. Fish Bull US 101:778–789

    Google Scholar 

  • Green BS, Reilly SM, McCormick MI (2002) A cost-effective method of preparing larval fish otoliths for reading using enzyme digestion and staining. J Fish Biol 61:1600–1605

    Google Scholar 

  • Guigand CM, Cowen RK, Llopiz JK, Richardson DE (2005) A coupled asymmetrical multiple opening closing net with environmental sampling system. Mar Tech Soc J 39:22–24

    Article  Google Scholar 

  • Hales LS, Jr, Hurley ADH (1991) Validation of daily increment formation in the otoliths of juvenile silver perch Bairdiella chrysura. Estuaries 14:199–206

    Article  Google Scholar 

  • Hamilton SL, Regetz J, Warner RR (2008) Postsettlement survival linked to larval life in a marine fish. Proc Natl Acad Sci 105:1561–1566

    Article  PubMed  Google Scholar 

  • Hare JA, Cowen RK (1991) Expatriation of Xyrichtys novacula (Pisces: Labridae) larvae: evidence of rapid cross-slope exchange. J Mar Res 49:801–823

    Article  Google Scholar 

  • Hare JA, Cowen RK (1994) Ontogeny and otolith microstructure of bluefish Pomatomus saltatrix (Pisces: Pomatomidae). Mar Biol 118:541–550

    Article  Google Scholar 

  • Hare JA, Cowen RK (1996) Transport mechanisms of larval and pelagic juvenile bluefish (Pomatomus saltatrix) from south Atlantic Bight spawning grounds to mid–Atlantic Bight nursery habitats. Limnol Oceanogr 41:1264–1280

    Google Scholar 

  • Hare JA, Cowen RK (1997) Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78:2415–2431

    Google Scholar 

  • Hare JA, Churchill JH, Cowen RK, Berger TJ, Cornillon PC, Dragos P, Glenn SM, Govoni JJ, Lee TN (2002) Routes and rates of larval fish transport from the southeast to the northeast United States continental shelf. Limnol Oceanogr 47:1774–1789

    Article  Google Scholar 

  • Hernaman V, Munday PL, Schlappy ML (2000) Validation of otolith growth-increment periodicity in tropical gobies. Mar Biol 137:715–726

    Article  Google Scholar 

  • Hindell JS, Jenkins GP (2005) Assessing patterns of fish zonation in temperate mangroves, with emphasis on evaluating sampling artefacts. Mar Ecol Prog Ser 290:193–205

    Article  Google Scholar 

  • Hoedt FE (2002) Growth in eight species of tropical anchovy determined from primary otolith increments. Mar Freshwater Res 53:859–870

    Article  Google Scholar 

  • Husaini M, Al-Ayoub S, Dashti J (2001) Age validation of nagroor, Pomadasys kaakan (Cuvier, 1830) (Family: Haemulidae) in Kuwaiti waters. Fish Res 53:71–81

    Article  Google Scholar 

  • Iglesias M, Brothers EB, Morales-Nin B (1997) Validation of daily increment deposition in otoliths: age and growth determination of Aphia minuta (Pisces: Gobiidae) from the NW Mediterranean. Mar Biol 129:279–287

    Article  Google Scholar 

  • Jassby AD, Powell TM (1990) Detecting changes in ecological time-series. Ecology 71:2044–2052

    Article  Google Scholar 

  • Jenkins GP, Black KP, Hamer PA (2000) Determination of spawning areas and larval advection pathways for King George whiting in southeastern Australia using otolith microstructure and hydrodynamic modelling I. Victoria. Mar Ecol Prog Ser 199:231–242

    Article  Google Scholar 

  • Jenkins GP, Davis TLO (1990) Age, growth rate, and growth trajectory determined from otolith microstructure of southern bluefin tuna Thunnus maccoyii larvae. Mar Ecol Prog Ser 63:93–104

    Article  Google Scholar 

  • Jones CM (2002) Age and growth. In: Fuiman LA, Werner RG (Eds) Fishery science: the unique contributions of early life stages. Blackwell Science Ltd, Oxford, pp 33–63

    Google Scholar 

  • Kingsford MJ, Choat JH (1985) The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnol Oceanogr 30:618–630

    Google Scholar 

  • Laroche JL, Richardson SL, Rosenburg AA (1982) Age and growth of a pleuronectid, Parophrys vetulus, during the pelagic larval period in Oregon coastal waters. Fish Bull 80:93–104

    Google Scholar 

  • Linkowski TB (1991) Otolith microstructure and growth pattern during the early life history of lanternfishes (family Myctophidae). Can J Zool 69:1777–1792

    Article  Google Scholar 

  • Llopiz JK, Cowen RK (2008) Precocious, selective and successful feeding of larval billfishes in the oceanic Straits of Florida. Mar Ecol Prog Ser 358:231–244

    Article  Google Scholar 

  • Martin MH (1995) Validation of daily growth increments in otoliths of Anguilla rostrata (LeSeur) elvers. Can J Zool 73:208–211

    Article  Google Scholar 

  • Massuti E, Morales-Nin B, Moranta J (1999) Otolith microstructure, age, and growth patterns of dolphin, Coryphaena hippurus, in the western Mediterranean. Fish Bull 97:891–899

    Google Scholar 

  • McCormick MI (1994) Variability in age and size at settlement of the tropical goatfish Upeneus tragula (Mullidae) in the northern Great Barrier Reef lagoon. Mar Ecol Prog Ser 103:1–15

    Article  Google Scholar 

  • McCurdy WJ, Panfili J, Meunier FJ, Geffen AJ, de Pontual H (2002) Preparation and observation techniques. C. Preparation of calcified structures. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 331–357

    Google Scholar 

  • Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol Prog Ser 137:25–37

    Article  Google Scholar 

  • Meekan MG, Meekan MG, Carleton JH, McKinnon AD, Flynn K, Furnas M (2003) What determines the growth of tropical reef fish larvae in the plankton: food or temperature? Mar Ecol Prog Ser 256:193–204

    Article  Google Scholar 

  • Morales-Nin B (2000) Review of growth regulation processes of otolith daily increment formation. Fish Res 46:53–67

    Article  Google Scholar 

  • Morales-Nin B, Aldebert Y (1997) Assessment of growth and hatchdate distribution of juvenile Merluccius merluccius in the Gulf of Lions (NW Mediterranean) determined by otolith microstructure and length frequency distribution. Fish Res 30:77–85

    Article  Google Scholar 

  • Morales-Nin B, Gutiérrez E, Massutí S (1995) Patterns of primary growth increments in otoliths of Sparus aurata larvae in relation to water temperature and food consumption. Sci Mar 59:57–64

    Google Scholar 

  • Morales-Nin B, Panfili J (2002a) Validation and verification methods. C. Indirect validation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 135–137

    Google Scholar 

  • Morales-Nin B, Panfili J (2002b) Preparation and observation techniques. D. Observation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 358–369

    Google Scholar 

  • Moreno T, Morales-Nin B (2003) Age determination and validation on otoliths of the sand-smelt Atherina presbyter (Cuvier, 1829) (Pisces: Atherinidae) from the central-east Atlantic. Fish Res 62:77–87

    Article  Google Scholar 

  • Mosegaard H, Folkvord A, Wright PJ (2002) Some uses of individual age data. B. Ecological applications. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 167–178

    Google Scholar 

  • Mosegaard H, Svedang H, Taberman K (1988) Uncoupling of somatic and otolith growth rates in Arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can J Fish Aquat Sci 45:1514–1524

    Article  Google Scholar 

  • Oxenford HA, Hunte W, Deane R, Campana SE (1994) Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean. Mar Biol 118:585–592

    Article  Google Scholar 

  • Paddack MJ, Sponaugle S (in press) Recruitment and habitat selection of newly settled Sparisoma viride to low coral-cover reefs. Mar Ecol Prog Ser

    Google Scholar 

  • Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173:1124–1127

    Article  Google Scholar 

  • Paris CB, Cowen RK (2004) Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol Oceanogr 49:1964–1979

    Article  Google Scholar 

  • Parsons GR, KM Peters (1989) Age determination in larval and juvenile sheepshead, Archosargus probatocephalus. Fish Bull 87:985–988

    Google Scholar 

  • Pepin P, Shears TH (1997) Variability and capture efficiency of bongo and Tucker trawl samplers in the collection of ichthyoplankton and other macrozooplankton. Can J Fish Aquat Sci 54:765–773

    Article  Google Scholar 

  • Peters KM, McMichael RH (1987) Early life-history of the red drum, Sciaenops ocellatus (Pisces, Sciaenidae), in Tampa Bay, Florida. Estuaries 10:92–107

    Article  Google Scholar 

  • Pitcher CR (1988) Validation of a technique for reconstructing daily patterns in the recruitment of a coral reef damselfish. Coral Reefs 7:105–112

    Article  Google Scholar 

  • Powell AB, Laban EH, Holt SA, Holt JG (2000) Validation of age estimates from otoliths of larval and juvenile spotted seatrout, Cynoscion nebulosus. Fish Bull 98:650–654

    Google Scholar 

  • Prince E, Lee D, Brothers E, Zweifel J (1991) Estimating age and growth of young Atlantic blue marlin Makaira nigricans from otolith microstructure. Fish Bull 89:441–459

    Google Scholar 

  • Radtke RL (1984a) Formation and structural composition of larval striped mullet otoliths. Trans Am Fish Soc 113:186–191

    Article  Google Scholar 

  • Radtke RL (1984b) Otolith formation and increment deposition in laboratory-reared skipjack tuna, Euthynnus pelamis, larvae. Proceedings of the international workshop on age determination in oceanic pelagic fishes: Tunas, billfishes and sharks. NOAA Tech Rep 8:99–103

    Google Scholar 

  • Radtke R (1984c) Scanning electron microscope evidence for yearly growth zones in giant bluefin tuna, Thunnus thynnus, otoliths from daily increments. Fish Bull 82:434–440

    Google Scholar 

  • Radtke R, Dean J (1981) Morphological features of the otoliths of the sailfish, Istiophorus platypterus, useful in age determination. Fish Bull 79:360–367

    Google Scholar 

  • Ralston S, Miyamoto GT (1983) Analyzing the width of daily otolith increments to age the Hawaiian snapper, Pristipomoides filamentosus. Fish Bull 81:523–535

    Google Scholar 

  • Raventos N, MacPherson E (2001) Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar Biol 138:1115–1120

    Article  Google Scholar 

  • Ré P (1984) Evidence of daily and hourly growth in pilchard larvae based on otolith growth increments, Sardina pilchardus (Walbaum, 1792). Cybium 8:33–38

    Google Scholar 

  • Reyns N, Sponaugle S (1999) Patterns and processes of brachyuran crab settlement to Caribbean coral reefs. Mar Ecol Prog Ser 185:155–170

    Article  Google Scholar 

  • Reznick D, Lindbeck E, Bryga H (1989) Slower growth results in larger otoliths: an experimental test with guppies (Poecilia reticulate). Can J Fish Aquat Sci 46:108–112

    Article  Google Scholar 

  • Riginos C, Victor BC (2001) Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proc R Soc Lond 268:1931–1936

    Article  CAS  Google Scholar 

  • Robertson DR, Green DG, Victor BC (1988) Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology 69:370–381

    Article  Google Scholar 

  • Rogers JS, Hare JA, Lindquist DG (2001) Otolith record of age, growth, and ontogeny in larval and pelagic juvenile Stephanolepis hispidus (Pisces: Monacanthidae). Mar Biol 138:945–953

    Article  Google Scholar 

  • Rosa HC, Ré P (1985) Influence of exogenous factors on the formation of daily microgrowth increments in otoliths of Tilapia mariae juveniles. Cybium 9:341–357

    Google Scholar 

  • Ross SW (2003) The relative value of different estuarine nursery areas in North Carolina for transient juvenile marine fishes. Fish Bull 101:384–404

    Google Scholar 

  • Sale PF (1980) The ecology of fishes on coral reefs. Ocean Mar Biol Ann Rev 18:367–421

    Google Scholar 

  • Sale PF, Douglas WA, Doherty PJ (1984) Choice of microhabiatat by coral reef fishes at settlement. Coral Reefs 3:91–99

    Article  Google Scholar 

  • Schmitt PD (1984) Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. Fish Bull 82:237–242

    Google Scholar 

  • Searcy S, Sponaugle S (2000) Variable larval growth in a coral reef fish. Mar Ecol Prog Ser 206:213–226

    Article  Google Scholar 

  • Searcy S, Sponaugle S (2001) Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82:2452–2470

    Google Scholar 

  • Secor DH, Dean JM (1992) Comparison of otolith-based back-calculation methods to determine individual growth histories of larval striped bass, Morone saxatilis. Can J Fish Aquat Sci 49:1439–1454

    Article  Google Scholar 

  • Secor DH, Dean JM, Laban EH (1991) Manual for otolith removal and preparation for microstructural examination. Belle W. Baruch Institute for Marine Biology and Coastal Research, 85pp. Online: http://cbl.umces.edu/~secor/otolith–manual.html

  • Secor DH, Dean JM, Laban EH (1992) Otolith removal and preparation for microstructural examination. Can Spec Publ Fish Aquat Sci 117:19–57

    Google Scholar 

  • Serafy JE, Cowen RK, Paris CB, Capo TR, Luthy SA (2003) Evidence of blue marlin, Makaira nigricans, spawning in the vicinity of Exuma Sound, Bahamas. Mar Freshwater Res 54:299–306

    Article  Google Scholar 

  • Shenker JM, Maddox ED, Wishinski R, Pearl A, Thorrold SR, Smith N (1993). Onshore transport of settlement-stage Nassau grouper Epinephelus striatus and other fishes in Exuma Sound, Bahamas. Mar Ecol Prog Ser 98:31–43

    Article  Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Sogard SM (1991) Interpretation of otolith microstructure in juvenile winter flounder (Pseudopleuronectes americanus): ontogenetic development, daily increment validation, and somatic growth relationships. Can J Fish Aquat Sci 48:1862–1871

    Article  Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 60:1129–1157

    Google Scholar 

  • Sponaugle S, Cowen RK (1994) Larval durations and recruitment patterns of two Caribbean gobies (Gobiidae): contrasting early life histories in demersal spawners. Mar Biol 120:133–143

    Google Scholar 

  • Sponaugle S, Cowen RK (1996a) Nearshore patterns of larval supply to Barbados, West Indies. Mar Ecol Prog Ser 133:13–28

    Article  Google Scholar 

  • Sponaugle S, Cowen RK (1996b) Larval supply and patterns of recruitment for two Caribbean fishes, Stegastes partitus and Acanthurus bahianus. Mar Freshwater Res 47:344–347

    Article  Google Scholar 

  • Sponaugle S, Cowen RK (1997) Early life history traits and recruitment patterns of Caribbean wrasses (Labridae). Ecol Monogr 67:177–202

    Article  Google Scholar 

  • Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda J, Boehlert GW, Kingsford MJ, Lindeman K, Grimes C, Munro JL (2002) Predicting self–recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70S:341–375

    Google Scholar 

  • Sponaugle S, Grorud-Colvert K (2006) Environmental variability, early life history traits, and survival of new recruits of a coral reef fish. Integr Comp Biol 46:623–633

    Article  Google Scholar 

  • Sponaugle S, Grorud-Colvert K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser 308:1–15

    Article  Google Scholar 

  • Sponaugle S, Pinkard DR (2004a) Impact of variable pelagic environments on natural larval growth and recruitment of the reef fish Thalassoma bifasciatum. J Fish Biol 64:34–54

    Article  Google Scholar 

  • Sponaugle S, Pinkard DR (2004b) Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. Mar Ecol Prog Ser 267:267–280

    Article  Google Scholar 

  • Struhsaker P, Uchiyama JH (1976) Age and growth of the nehu, Stolephorus purpureus (Pisces: Engraulidae), from the Hawaiian Islands as indicated by daily growth increments of sagittae. Fish Bull 74:9–17

    Google Scholar 

  • Sugeha Hagi Y, Shinoda A, Marui M, Arai T, Tsukamoto K (2001) Validation of otolith daily increments in the tropical eel Anguilla marmorata. Mar Ecol Prog Ser 220:291–294

    Article  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Thorrold SR (1989) Estimating some early life history parameters in a tropical clupeid Herklotsichthys castelnaui from daily growth increments in otoliths. Fish Bull 87:73–84

    Google Scholar 

  • Thorrold SR, Hare JA (2002) Otolith applications in reef fish ecology. In: Sale PF (Ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. San Diego, CA, pp 243–264

    Google Scholar 

  • Thorrold SR, Milicich MJ (1990) Comparison of larval duration and presettlement and postsettlement growth in two species of damselfish, Chromis atripectoralis and Pomacentrus coelestis (Pisces, Pomacentridae), from the Great Barrier Reef. Mar Biol 105:375–384

    Article  Google Scholar 

  • Thresher RE, Colin PL, Bell LJ (1989) Planktonic duration, distribution and population structure of western and central Pacific damselfishes (Pomacentridae). Copeia 1989:420–434

    Article  Google Scholar 

  • Tolimieri N (1995) Effects of microhabitat characteristics on the settlement and recruitment of a coral reef fish at two spatial scales. Oecologia 102:52–63

    Google Scholar 

  • Troadec H, Benzinou A (2002) Computer-assisted age determination. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 199–241

    Google Scholar 

  • Tsuji S, Aoyama T (1982) Daily growth increments observed in otoliths of the larvae of Japanese Red Sea Bream (Pagrus major). Bull Jpn Soc Sci Fish 48:1559–1562

    Google Scholar 

  • Tsukamoto K (1988) Otolith tagging of ayu embryo with flourescent substances. Bull Jpn Soc Sci Fish 54:1289–1295

    Google Scholar 

  • Tsukamoto K (1989) Otolith daily growth increments in the Japanese eel. Bull Jpn Soc Sci Fish 55:1017– 1021

    Google Scholar 

  • Tsukamoto Y, Okiyama M (1993) Growth during the early life history of the Pacific tarpon, Megalops cyprinoides. Jpn J Ichthyol 39:379–386

    Google Scholar 

  • Tucker JW, Warlen SM (1986) Ageing of common snook Centropomus undecimalis larvae using sagittal daily growth rings. NE Gulf Sci 8:173–176

    Google Scholar 

  • Tzeng WN, Yu SY (1989) Validation of daily growth increments in otoliths of milkfish larvae by oxytetracycline labeling. Trans Am Fish Soc 118:168–174

    Article  Google Scholar 

  • Uchiyama JH, Strusaker P (1981) Age and growth of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, as indicated by daily growth increments of sagittae. Fish Bull 79:151–162

    Google Scholar 

  • Valles H, Sponaugle S, Oxenford H (2001) Larval supply to a marine reserve and adjacent fished area in the Soufriere Marine Management Area, St. Lucia, West Indies. J Fish Biol 59:152–177

    Google Scholar 

  • Victor BC (1982) Daily otolith increments and recruitment in two coral-reef wrasses, Thalassoma bifasciatum and Halichoeres bivittatus. Mar Biol 71:203–208

    Article  Google Scholar 

  • Victor BC (1983) Settlement and larval metamorphosis produce distinct marks on the otoliths of the slippery dick Halichoeres bivittatus. In: Reaka ML (Ed) The ecology of deep and shallow coral reefs. National Oceanic and Atmospheric Administration (Symposium Series on Underwater Research Vol 1), Rockville, pp 47–51

    Google Scholar 

  • Victor BC (1986) Larval settlement and juvenile mortality in a recruitment-limited coral-reef fish population. Ecol Monogr 56:145–160

    Article  Google Scholar 

  • Victor BC, Wellington GM (2000) Endemism and the pelagic larval duration of reef fishes in the eastern Pacific Ocean. Mar Ecol Prog Ser 205:241–248

    Article  Google Scholar 

  • Vigliola L, Meekan MG (2002) Size at hatching and planktonic growth determine post-settlement survivorship of a coral reef fish. Oecologia 131:89–93

    Article  Google Scholar 

  • Villanueva R, Moli B (1997) Validation of the otolith increment deposition ratio using alizarin marks in juveniles of the sparid fishes, Diplodus vulgaris and D. puntazzo. Fish Res 30:257–260

    Article  Google Scholar 

  • Walker SM, McCormick MI (2004) Otolith check formation and accelerated growth associated with sex change in an annual protogynous tropical fish. Mar Ecol 266:201–212

    Article  Google Scholar 

  • Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567

    Article  Google Scholar 

  • Wilson CA (1995) Clinic: chemical marking in otoliths. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, p 719

    Google Scholar 

  • Wilson DT, McCormick MI (1997) Spatial and temporal validation of settlement marks in the otoliths of tropical reef fishes. Mar Ecol Prog Ser 153:259–271

    Article  Google Scholar 

  • Wilson DT, McCormick MI (1999) Microstructure of settlement marks in the otoliths of tropical reef fishes. Mar Biol 134:29–41

    Article  Google Scholar 

  • Wilson DT, Meekan MG (2002) Growth-related advantages for survival to the point of replenishment in the coral reef fish Stegastes partitus (Pomacentridae). Mar Ecol Prog Ser 231:247–260

    Article  Google Scholar 

  • Wright PJ, Panfili J, Folkvord A, Mosegaard H, Meunier FJ (2002b) Validation and verification methods A. Direct validation In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 114–127

    Google Scholar 

  • Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002a) Types of calcified structures. A. Otoliths In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Brest, France, pp 31–57

    Google Scholar 

  • Xie S, Watanabe Y, Saruwatari T, Masuda R, Yamashita Y, Sassa C, Konishi Y (2005) Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J Fish Biol 66:1704–1719

    Article  Google Scholar 

  • Zapata FA, Herron PA (2002) Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser 230:295–300

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Zerbi A, Aliaume C, Joyeux J-C (2001) Growth of juvenile tarpon in Puerto Rican estuaries. ICES J Mar Sci 58:87–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sponaugle, S. (2009). Daily Otolith Increments in the Early Stages of Tropical Fish. In: Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A. (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5775-5_4

Download citation

Publish with us

Policies and ethics