Skip to main content

Intermolecular potential for simple liquids and gases in the high pressure region

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

The modified form of the repulsive potential has been derived by using of the equation of state treatment in the mean field approximation, such parameters of the potential as the molecular size and the steepness parameter being considered as the effective ones. The functional form of a repulsive potential is discussed on the base of results obtained by an analysis of statistical valid equations of state, high frequency asymptotic of the depolarized light scattering and the processing of temperature dependences for one-particle contributions to the self-diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zwanzig, R. W. (1954) High temperature equation of state by a perturbation method, 1. Nonpolar gases, J. Chem. Phys. 22(8), 1420-1426.

    MathSciNet  ADS  Google Scholar 

  2. Zwanzig, R. W., Kirkwood, J. G., Stripp, K. F., and Oppenheim, I. (1953) Radial distribution functions and the equation of state of monoatomic fluids, J. Chem. Phys. 21(7), 1268-1275.

    Article  ADS  Google Scholar 

  3. Robertson, S. L., Babb, S. E., and Scott, G. J. (1969) Isotherms of argon to 10000 bars and 4000C, J. Chem. Phys. 50(5). 2160-2166.

    Article  ADS  Google Scholar 

  4. Atamas, A. A., Bardik, V. Yu., and Sysoev, V.M. (2000) Correction of the repulsive potential parameters Ukr. J. Phys. 45, 1184-1187.

    Google Scholar 

  5. Bardik, V. Yu., and Sysoev, V. M. (1998) Equation of state for liquid argon in the high-density limit, Low Temp. Phys. 24, 602-603; Fiz. Niz.Temp. 24, 797-799.

    Google Scholar 

  6. Bulavin, L. A., Bardic, V. Yu., Prylutskyy, Yu. I., and Sysoev V. M. (2002) On the connection of elastic properties for fullerene systems with parameters of model intermolecular potential, Ukr. J. Phys. 47, 486-48.

    Google Scholar 

  7. McTague, J. P., and Birnbaum, G. (1968) Collision-induced light scattering in gaseous argon and krypton, Phys.Rev. Lett. 21(4), 661-664.

    Article  ADS  Google Scholar 

  8. Volterra, V., Bucaro, J. A., and Litovitz, T.A. (1971) Two mechanisms for depolarized light scattering from gaseous argon, Phys. Rev. Lett. 26, 55-57.

    Article  ADS  Google Scholar 

  9. Barocchi, F., and McTague, J. P. (1975) Collisions-induced light scattering in gaseous CH4, Phys. Lett. A. 53, 488-490.

    Article  ADS  Google Scholar 

  10. Levine, H. B., and Birnbaum, G. (1968) Collisions-induced light scattering in gaseous Phys. Rev. Lett. 20(9), 439-441.

    Article  ADS  Google Scholar 

  11. Lokotosh, T. V., and Malomuzh, N. P. (2000) Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids, Physica A 286(3- 4), 474-488.

    Article  ADS  Google Scholar 

  12. Lokotosh, T. V., and Malomuzh, N.P. (2001) Manifestation of collective effects in the rotational motion of molecules in liquids, J. Mol. Liq. 93(1-3), 95-108.

    Article  Google Scholar 

  13. Bulavin, L. A., Lokotosh, T. V., Malomuzh, N. P., and Shakun, K. S. (2004) Collective contributions to the selfdiffusion process in liquids, Ukr. Fiz. J. 49 (6), 556-561.

    Google Scholar 

  14. Rahman, A. (1964) Correlation in the motion of atoms in liquid argon, Phys. Rev. A 136, 405-411.

    ADS  Google Scholar 

  15. March, N. H., and Tosi, M. P. (1976) Atomic dynamics of liquids, Macmillan Press, p.296.

    Google Scholar 

  16. CRS Handbook of Chemistry and Physics: Ready-Reference Book of Chemical and Physical Data; 67-th ed/ Ed.-in-chief R.C. West (Boca Raton: CRS Press).

    Google Scholar 

  17. Tegeler, Ch., Span, N., and Wagner, W. (1999) A new equation of state for Argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa J. Phys. Chem. Ref. Data 28(3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Bardic, V.Y., Bulavin, L.A., Sysoev, V.M., Malomuzh, N.P., Shakun, K.S. (2007). Intermolecular potential for simple liquids and gases in the high pressure region. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_22

Download citation

Publish with us

Policies and ethics