Skip to main content

Isobaric and isochoric properties of glass-formers

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

From new results for the equation of state of dibutylphthalate in combination with previously reported dielectric relaxation data, an analysis of the volume contribution to the dynamics was carried out for this fragile glass-former (m P =84). We find that the ratio of the isochoric and isobaric fragilities equals 0.75, the largest found to date for any molecular van der Waals liquids, reflecting a strong temperature effect, consistent with the large fragility. The relaxation times superpose when plotted versus temperature times the specific volume raised to the 3.2 power. This is a somewhat larger value of the exponent than expected based on the fragility of DBP. The implication is that for molecular glass-formers, the classical Lennard-Jones repulsive potential may represent the limit for fragile liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, C. A. (1985) Strong and fragile liquids, in Relaxation in Complex Systems, eds. K. L. Ngai and G. B. Wright, Washington DC.

    Google Scholar 

  2. Angell, C. A. (1995) Formation of glasses from liquids and biopolymers, Science 267, 1924.

    Article  ADS  Google Scholar 

  3. The values of m Pfor inorganic glass-formers or plastic crystal are not considered since measurements under high pressure are unavailable.

    Google Scholar 

  4. Plazek, D. J. and Ngai, K. L. (1991) Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts, Macromolecules 24, 1222.

    Article  ADS  Google Scholar 

  5. Böhmer, R., Ngai, K. L., Angell, C. A., and Plazek, D. J. (1993) Nonexponential relaxations in strong and fragile glass formers, J. Chem. Phys. 99, 4201.

    Article  ADS  Google Scholar 

  6. Huang, D. and McKenna, G. B. (2001) New insights into the fragility dilemma in liquids, J. Chem. Phys. 114, 5621.

    Article  ADS  Google Scholar 

  7. The value for PEO (mP= 23) reported previously by Huang and McKenna was calculated from data far from Tg (Ω< 10-4s); m is well known to decrease for shorter W.

    Google Scholar 

  8. Casalini, R. and Roland, C. M. (2005) Scaling of the supercooled dynamics and its relation to the pressure dependences of the dynamic crossover and the fragility of glass formers, Phys. Rev. B 71, 041210.

    Article  Google Scholar 

  9. Casalini, R. and Roland, C. M. (2004) Thermodynamical scaling of the glass transition dynamics, Phys. Rev. E 69, 062501

    Article  ADS  Google Scholar 

  10. Casalini, R. and Roland, C. M. (2004) Scaling of the segmental relaxation times of polymers and its relation to the thermal expansivity, Colloid Polym. Sci. 283, 107.

    Article  Google Scholar 

  11. Roland, C. M., Casalini, R., and Paluch, M. (2004) Effects of the volume and temperature on the global and segmental dynamics in poly(propylene glycol) and 1,4-polyisoprene, J. Polym. Sci. Polym. Phys. Ed. 42, 4313.

    Google Scholar 

  12. Roland, C. M. and Casalini, R. (2005) Density scaling of the dynamics of vitrifying liquids and its relationship to the dynamic crossover, J. Non-Cryst. Solids 351, 2581.

    Article  ADS  Google Scholar 

  13. Tölle, A. (2001) Neutron scattering studies of the model glass former ortho-terphenyl, Rep. Prog. Phys. 64, 1473.

    Article  ADS  Google Scholar 

  14. Dreyfus, C., Aouadi, A., Gapinski, J., Matos-Lopes, M., Steffen, W., Patkowski, A., and Pick, R. M. (2003) Scaling the alpha-relaxation time of supercooled fragile organic liquids, Physical Review E 68, 011204.

    Article  ADS  Google Scholar 

  15. Dreyfus, C., Le Grand, A., Gapinski, J., Steffen, W., and Patkowski, A., (2004) Temperature and pressure study of Brillouin transverse modes in the organic glass-forming liquid orthoterphenyl, Eur. Phys. J.B. 42, 309.

    Article  ADS  Google Scholar 

  16. Alba-Simionesco, C., Calliaux, A., Alegria, A., and Tarjus, G. (2004) Scaling out the density dependence of the relaxation in glass-forming polymers, Europhys. Lett. 68, 58.

    Article  ADS  Google Scholar 

  17. Budzien, J., McCoy, J. D., and Adolf, D. B. (2004) General relationships between the mobility of a chain fluid and various computed scalar metrics, J. Chem. Phys. 121, 10291.

    Article  ADS  Google Scholar 

  18. Sekula, M., Pawlus, S., Hensel-Bielowka, S., Ziolo, J., Paluch M., and Roland, C. M. (2004) Structural and secondary relaxations in supercooled di-n-butylphthalate and di-isobutylphthalate at elevated pressure, J. Phys. Chem. B, 108, 4997.

    Article  Google Scholar 

  19. Roland, C. M., Hensel-Bielowka, S., Paluch M., and Casalini, R. (2005) Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure, Rep. Prog. Phys. 68, 1405-1478.

    Article  ADS  Google Scholar 

  20. Casalini, R. and Roland, C. M. (2005) Why liquids are fragile, Phys. Rev. E 72, 031503.

    Article  ADS  Google Scholar 

  21. Casalini, R., Mc Grath, K. J., and Roland, C. M. (2005) Isobaric and isochoric proper- ties of an extremely fragile glass-former,J.. Non Crystalline Solids, submitted.

    Google Scholar 

  22. Casalini, R. and Roland, C. M. (2005) Temperature and density effects on the local segmental and global chain dynamics of poly(oxybutylene), Macromolecules 38, 1779.

    Article  ADS  Google Scholar 

  23. Hoover, W. H. and Ross, M. (1971) Statistical theories of melting, Contemp. Phys. 12, 339.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Casalini, R., Roland, C.M. (2007). Isobaric and isochoric properties of glass-formers. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_9

Download citation

Publish with us

Policies and ethics