Skip to main content

Neuropsychological Characteristics of Academic and Creative Giftedness

  • Chapter
International Handbook on Giftedness

Abstract

Evidence for interpretable neural correlates of giftedness comes from two main lines of enquiry. First, studies comparing the neural functioning of gifted children with age-matched peers not identified as gifted consistently report that gifted subjects display enhanced frontal cortical activation and inter-hemispheric functional connectivity. Second, studies which compare the neural function and structure of high-IQ adults with those of average IQ consistently report that high-IQ subjects display relatively enhanced inferior lateral prefrontal cortical (PFC) activations, together with relatively enhanced activations in a network of other cortical regions including the inferior parietal cortex. The salience of PFC activations is supported by neuroanatomical studies in which the grey matter densities of high-IQ subjects in frontal regions are significantly higher than average. These data can account for enhanced executive capability as one important neuropsychological characteristic of gifted people and a more efficacious working memory as another.

Gifted children process information more rapidly and with less attenuation than others. Such individual differences can be attributed to neurophysiological differences that affect neuronal efficiency.

Geake (1997, p. 28)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 669.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 849.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J. E., O’Boyle, M. W., & Benbow, C. P. (1996). Developmentally advanced EEG alpha power in gifted male and female adolescents. International Journal of Psychophysiology, 23, 25–31.

    Article  Google Scholar 

  • Baddeley, A., & Sala, S. D. (1998). Working memory and executive control. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 9–21). Oxford: Oxford University Press.

    Google Scholar 

  • Birbaumer, N., Lutzenberger, W., Rau, H., Braun, C., & Mayer-Kress, G. (1996). Perception of music and dimensional complexity of brain activity. International Journal of Bifurcation and Chaos, 6(2), 267–278.

    Article  Google Scholar 

  • Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.

    Article  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499–506.

    Article  Google Scholar 

  • Chen, A. C. N. & Buckley, K. C. (1988). Neural perspectives of cerebral correlates of giftedness. International Journal of Neuroscience, 9(41), 115–125.

    Article  Google Scholar 

  • Clark, B. (1997). Growing up gifted (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Cowan, N. (2005). Working memory capacity. Psychology Press: New York.

    Book  Google Scholar 

  • Csikszentmihalyi, M. (1998). Creativity and genius: A systems perspective. In A. Steptoe (Ed.), Genius and the mind: Studies of creativity and temperament (pp. 39–64). Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences USA, 95, 14529–14534.

    Article  Google Scholar 

  • Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820–829.

    Article  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.

    Article  Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., & Ahmed, A., et al. (2000). A neural basis for intelligence. Science, 289, 457–460.

    Article  Google Scholar 

  • Fardell, R., & Geake, J. G. (2003). Vertical semester organisation in a rural secondary school as a vehicle for acceleration of gifted students, Australasian Journal of Gifted Education, 11(2), 16–30.

    Google Scholar 

  • Frangou, S., Chitins, X., & Williams, S. C. (2004). Mapping IQ and gray matter density in healthy young people. NeuroImage, 23(3), 800–805.

    Article  Google Scholar 

  • Fuster, J. M. (2003). Cortex and mind: Unifying cognition. Oxford: Oxford University Pres.

    Google Scholar 

  • Gagné, F. (1985). Giftedness and talent: Reexamining a reexamination of the definitions. Gifted Child Quarterly, 29(3), 103–112.

    Article  Google Scholar 

  • Geake, J. G. (1996). Why Mozart? An information processing account of musical abilities. Research Studies in Music Education Journal, 7, 28–45.

    Article  Google Scholar 

  • Geake, J. G. (1997). Thinking as evolution in the brain: Implications for giftedness. Australasian Journal of Gifted Education, 6(1), 27–33.

    Google Scholar 

  • Geake, J. G. (2005a). The neurological basis of intelligence: Implications for education – An abstract. Gifted and Talented, 9(1), 8.

    Google Scholar 

  • Geake, J. G. (2005b). An fMRI study of fluid analogical reasoning: Towards an understanding mathematical thinking.Symposium on mathematical and scientific education. Copenhagen: Learning Lab Denmark, December.

    Google Scholar 

  • Geake, J. G. (2006). Mathematical brains. Gifted and Talented, 10(1), 2–7.

    Google Scholar 

  • Geake, J. G., & Cooper, P. W. (2003). Implications of cognitive neuroscience for education. Westminster Studies in Education, 26(10), 7–20.

    Article  Google Scholar 

  • Geake, J. G., & Dodson, C. S. (2005). A neuro-psychological model of the creative intelligence of gifted children. Gifted & Talented International, 20(1), 4–16.

    Google Scholar 

  • Geake, J. G., & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies, NeuroImage, 26(2), 555–564.

    Article  Google Scholar 

  • Geake, J. G., & Hansen, P. C. (2006). Functional neural correlates of high creative intelligence as determined by abilities at fluid analogising, Society for Neuroscience Annual Meeting, Atlanta, Georgia, October 17.

    Google Scholar 

  • Geake, J. G., & Hansen, P. C. (submitted). Neural correlates of high creative intelligence as determined by abilities at fluid analogising.

    Google Scholar 

  • Geake, J. G., & Kringelbach, M. L. (2007). Imaging imagination: Brain scanning of the imagined future. In I. Roth (Ed.), Imaginative minds. London: Proceedings of the British Academy, 147, 307–326.

    Google Scholar 

  • Geake, J. G., & O’Boyle, M. (2000). On Educating the very able in mathematics: A sampling of current empirical research. Proceedings of Mathematics 2000 Festival, 10–13 January, University of Melbourne, pp. 153–156.

    Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.

    Article  Google Scholar 

  • Giedd, J. N., Blumethal, J., Jeffires, N. O., Castellanos, F. X., Liu, H., & Zijdenbois, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.

    Article  Google Scholar 

  • Gleick, J. (1992). Genius: Richard Feynman and modern physics. Abacus.

    Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.

    Article  Google Scholar 

  • Gross, M. U. M. (2004). Exceptionally gifted children (2nd ed.). London: Routledge Farmer.

    Google Scholar 

  • Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralisation in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11(4), 405–414.

    Article  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23(1), 425–433.

    Article  Google Scholar 

  • Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429–441.

    Article  Google Scholar 

  • Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.

    Google Scholar 

  • Hofstadter, D. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: Perspectives from cognitive science (pp. 499–538). Cambridge MA: MIT Press,.

    Google Scholar 

  • Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge MA: The MIT Press.

    Google Scholar 

  • Howard, D. (1997). Language in the human brain. In M. D. Rugg (Ed.), Cognitive neuroscience (pp. 277–304). Hove UK: Psychology Press.

    Google Scholar 

  • James, W. (1895/1950). The principles of psychology. New York: Henry Holt.

    Google Scholar 

  • Johnson, J., Im-Bolter, N., & Pascual-Leone, J. (2003). Development of mental attention in gifted and mainstream children: The role of mental capacity, inhibition, and speed of processing. Child Development, 74(6), 1594–1614.

    Article  Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.

    Article  Google Scholar 

  • Kalbfleisch, M. L. (2004). Functional neural anatomy of talent. The Anatomical Record Part B: The New Anatomist, 277B(1), 21–36.

    Article  Google Scholar 

  • Kanevsky, L. S. (1995). Learning potentials of gifted students. Roeper Review, 17, 157–163.

    Article  Google Scholar 

  • Kolb, B., & Wishaw, I. Q. (1996). Fundamentals of human neuropsychology (4th ed.). New York: W.H. Freeman & Co.

    Google Scholar 

  • LeDoux, J. (1998). The Emotional Brain. New York: Phoenix.

    Google Scholar 

  • Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., & Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. Neuroimage, 29(2), 578–586.

    Article  Google Scholar 

  • Lehrl, S., & Fisher, B. (1990). A basic information psychological parameter (BIP) for the reconstruction of concepts of intelligence. European Journal of Personality, 4, 259–286.

    Article  Google Scholar 

  • Livne, N. L., Livne, O. E., & Milgram, R. M. (1999). Assessing academic and creative abilities in mathematics at four levels of understanding. International Journal of Mathematics Education in Science and Technology, 30(2), 227–242.

    Article  Google Scholar 

  • Luria, A. R. (1973). The working brain. New York: Basic Books.

    Google Scholar 

  • Mitchell, M. (1993). Analogy-making as perception: A computer model. Cambridge MA: The MIT Press.

    Google Scholar 

  • Mills, D. L., Plunkett, K., Prat, C., & Schafer, G. (2005). Watching the infant brain learn words: Effects of vocabulary size and experience. Cognitive Development, 20, 19–31.

    Article  Google Scholar 

  • Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art and science. London: Thames and Hudson.

    Google Scholar 

  • Mithen, S. (2005). The singing neanderthals. London: Phoenix.

    Google Scholar 

  • O’Boyle, M. W. (2000). Neuroscientific research findings and their potential application to gifted educational practice. Australasian Journal of Gifted Education, 9(1), 6–10.

    Google Scholar 

  • O’Boyle, M. W., Alexander, J. E., & Benbow, C. P. (1991).Enhanced right hemisphere activation in the mathematically precocious: A preliminary EEG investigation. Brain Cognition, 17(2), 138–153.

    Article  Google Scholar 

  • O’Boyle, M. W., & Benbow, C. P. (1990). Enhanced right hemisphere involvement during cognitive processing may relate to intellectual precocity. Neuropsychologia, 28(2), 211–216.

    Article  Google Scholar 

  • O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11(4), 415–443.

    Article  Google Scholar 

  • O’Boyle, M. W., Cunnington, R., Silk, T., Vaughan, D., Jackson, G., & Syngeniotis, A., et al. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25, 583–587.

    Article  Google Scholar 

  • O’Boyle, M. W., Gill, H. S., Benbow, C. P., & Alexander, J. E.. (1994). Concurrent finger-tapping in mathematically gifted males: Evidence for enhanced right hemisphere involvement during linguistic processing. Cortex, 30(3), 519–526.

    Google Scholar 

  • Orzhekhovskaia, N. S. (1996). The cytoarchitectonic characteristics of the frontal fields of the brain in gifted people. Morfologiia, 109(3), 7–9.

    Google Scholar 

  • Porter, L. (1997). A proposed model describing the realisation of gifted potential. Australasian Journal of Gifted Education, 6(2), 33–43.

    Google Scholar 

  • Renzulli, J. S. (1986). The three-ring conception of giftedness: A developmental model for creative productivity. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 53–92). Cambridge MA: Cambridge University Press.

    Google Scholar 

  • Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.

    Google Scholar 

  • Ryan, M., & Geake, J. G. (2003). A study of a vertical curriculum in mathematics for gifted primary pupils, Australasian Journal of Gifted Education, 11(2), 31–41.

    Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.

    Article  Google Scholar 

  • Samco, M. R., Caplovitz, G. P., Hsieh, P.-J., & Tse, P. U. (2005). Neural correlates of human creativity revealed using diffusion tensor imaging [Abstract]. Journal of Vision, 5(8), 906.

    Article  Google Scholar 

  • Shapiro, M. L., & Eichenbaum, H. (1997). Learning and memory: Computational principles and neural mechanisms. In M. D. Rugg (Ed.), Cognitive neuroscience (pp. 77–130). Hove UK: Psychology Press.

    Google Scholar 

  • Shavinin. (2006). Personal communication. October 2006.

    Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., & Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676–679.

    Article  Google Scholar 

  • Singh, H., & O’Boyle, M. W. (2004). Interhemispheric interaction during global-local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18(2), 671–677.

    Article  Google Scholar 

  • Steptoe, A. (Ed.) (1998). Genius and the mind: Studies of creativity and temperament. Oxford: Oxford University Press.

    Google Scholar 

  • Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34, 261–272.

    Article  Google Scholar 

  • Zhang, Q., Shi, J., Luo, Y., Zhao, D., & Yang, J. (2006). Intelligence and information processing during a visual search task in children: An event-related potential study. Neuroreport, 17(7), 747–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Geake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Geake, J.G. (2009). Neuropsychological Characteristics of Academic and Creative Giftedness. In: Shavinina, L.V. (eds) International Handbook on Giftedness. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6162-2_11

Download citation

Publish with us

Policies and ethics