Skip to main content

Extremely halophilic archaea and the issue of long-term microbial survival

  • Review Paper
  • Chapter
  • First Online:
Life in Extreme Environments

Abstract

Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alba I, Torreblanca M, Sanchez M, Colom MF, Meseguer I (2001) Isolation of the fibrocrystalline body, a structure present in haloarchaeal species, from Halobacterium salinarum. Extremophiles 5: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Antón J, Llobet-Brossa FE, Rodriguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234. Erratum in: Genome Res 2004, 14:2510

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H (2005) Walsby’s square archaeon. It’s hip to be square but even more hip to be culturable. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Cellular origins, life in extreme habitats and astrobiology (COLE), Seckbach J (ed) Vol. 9, Adaptations to life at high salt concentrations in archaea, bacteria and eukarya. Springer Verlag, Heidelberg, New York, pp 185–200

    Google Scholar 

  • Boring J, Kushner DJ, Gibbons NE (1963) Specificity of the salt requirement of Halobacterium cutirubrum. Can J Microbiol 9:143–154

    CAS  Google Scholar 

  • Castillo AM, Gutierrez MC, Kamekura M, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2006) Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770

    Article  PubMed  CAS  Google Scholar 

  • Charlebois RL, DasSarma S (1995) Insertion elements of halophiles. In: DasSarma S, Fleischmann EM (eds) Archaea: A laboratory manual—Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 253–256

    Google Scholar 

  • Charlebois RL (1999) Evolutionary origins of the haloarchaeal genome. In: Oren A (eds) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 309–317

    Google Scholar 

  • Cho KY, Doy CH, Mercer EH (1967) Ultrastructure of the obligate halophilic bacterium Halobacterium halobium. J Bacteriol 94:196–201

    Article  PubMed  CAS  Google Scholar 

  • Christian JHB, Waltho JA (1962) Solute concentration within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65:506–508

    Article  PubMed  CAS  Google Scholar 

  • Denner EBM, McGenity TJ, Busse H-J, Wanner G, Grant WD, Stan-Lotter H (1994) Halococcus salifodinae sp.nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780

    Google Scholar 

  • Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Ann NY Acad Sci 108:453–460

    Article  PubMed  CAS  Google Scholar 

  • Dym O, Mevarech M, Sussman JL (1995) Structural features stabilizing halophilic malate dehydrogenase from an archaebacterium. Science 267: 1344–1346

    Article  CAS  PubMed  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:3347–3351

    Article  PubMed  CAS  Google Scholar 

  • Einsele G (1992) Sedimentary basins. Evolution, facies and sediment budget. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Eisenberg H, Wachtel EJ (1987) Structural studies of halophilic proteins, ribosomes and organelles of bacteria adapted to extreme salt concentrations. Ann Rev Biophys Biophys Chem 16:69–92

    Article  CAS  Google Scholar 

  • Essen LO (2002) Halorhodopsin: light-driven ion pumping made simple? Curr Opin Struct Biol 12:516–522

    Article  PubMed  CAS  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogenetic interference package) version 3.5.1c (distributed by the author) Department of Genetics. University of Seattle, WA, USA

    Google Scholar 

  • Fendrihan S, Stan-Lotter H (2004) Survival of halobacteria in fluid inclusions as a model of possible biotic survival in Martian halite. In: Teodorescu HN, Griebel HS (eds) Mars and Planetary Science and Technolgy, selected papers from EMC’04. Performantica Press, Iasi, Romania, pp 9–18

    Google Scholar 

  • Ferrer C, Mojica FJM, Juez G, Rodriguez-Valera F (1996) Differentially transcribed regions of Haloferax volcanii genome depending on the medium salinity. J Bacteriol 178:309–313

    PubMed  CAS  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436. Erratum in: Nature 420 (2002):202

    Article  PubMed  CAS  Google Scholar 

  • Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27

    CAS  Google Scholar 

  • Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe–2S ferredoxin. Nature Struct Biol 3:452–458

    Article  PubMed  CAS  Google Scholar 

  • Gemmell RT, McGenity TJ, Grant WD (1998) Use of molecular techniques to investigate possible long-term dormancy of halobacteria in ancient halite deposits. Ancient Biomol 2:125–133

    CAS  Google Scholar 

  • Gooding JL (1992) Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99:28–41

    Article  CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. nov., In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol. I, 2nd edn. Springer Verlag, New York, pp 294–301

    Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permo-Triassic salt deposit, classification of Halobacterium sp. NRC-1 as a strain of Halobacterium salinarum and emended description of Halobacterium salinarum. Extremophiles 8:431–439

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitas A (eds) (2005) Adaptations to life at high salt concentrations in archaea, bacteria and eukarya. Vol 9 of: Cellular origins, life in extreme habitats and astrobiology (COLE), Seckbach J (Series ed). Springer Verlag, Heidelberg, New York

    Google Scholar 

  • Gutierrez MC, Garcia MT, Ventosa A, Nieto JJ, Ruiz-Berraquero F (1986) Occurrence of megaplasmids in halobacteria. J Appl Bacteriol 61:67–71

    Google Scholar 

  • Haugland RP (2002) LIVE/DEAD BacLight bacterial viability kits. In: Gregory (eds) Handbook of fluorescent probes and research products, ninth edition. Molecular Probes, Eugene, Oregon, USA, pp 626–628

    Google Scholar 

  • Hochstein LI (1992) ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase. FEMS Microbiol Lett 97:155–159

    Article  PubMed  CAS  Google Scholar 

  • Hochstein LI, Lawson D (1993) Is ATP synthesized by a vacuolar-ATPase in the extremely halophilic bacteria? Experientia 49:1059–1063

    Article  CAS  Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135

    Article  CAS  Google Scholar 

  • Ihara K, Mukohata Y (1991) The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch Biochem Biophys 286:111–116

    Article  PubMed  CAS  Google Scholar 

  • Ihara K, Watanabe S, Sugimura K, Katagiri I, Mukohata Y (1997) Identification of proteolipid from an extremely halophilic archaeon Halobacterium salinarum as an N,N’-dicyclohexyl-carbodiimide binding subunit of ATP synthase. Arch Biochem Biophys 341:267–272

    Article  PubMed  CAS  Google Scholar 

  • Javor BJ (1989) Hypersaline environments: microbiology and biogeochemistry. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Joshi JG, Guild WR, Handler P (1963) The presence of two species of DNA in some halobacteria. J Mol Biol 6:34–38

    Article  CAS  Google Scholar 

  • Juez G, Rodriguez-Valera F, Herrero N, Mojica FJM (1990) Evidence for salt-associated restriction pattern modifications in the archaebacterium Haloferax mediterranei. J Bacteriol 172:7278–7281

    PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (eds) Mammalian Protein Metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 135–161

    Google Scholar 

  • Kamekura M, Kates M (1999) Structural diversity of membrane lipids in members of Halobacteriaceae. Biosci Biotechnol Biochem 63:969–972

    Article  PubMed  CAS  Google Scholar 

  • Kamekura M, Mizuki T, Usami R, Yoshida Y, Horikoshi K, Vreeland RH (2004) The potential use of signatures bases from 16S rRNA gene sequences to aid the assignment of microbial strains to genera of halobacteria. In: Ventosa A (ed) Halophilic Microorganisms. Springer Verlag, Berlin, Heidelberg, pp 77–87

    Google Scholar 

  • Kates M (1993) Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia 49:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Kates M, Kushwaha SC (1995) Isoprenoids and polar lipids of extreme halophiles. In: DasSarma S, Fleischmann EM (eds) Archaea, a laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 35–54

    Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Cohen Y (1982) Ultrastructure of square bacteria from a brine pool in southern Sinai. J Bacteriol 150:851–860

    PubMed  CAS  Google Scholar 

  • Klaus W (1974) Neue Beiträge zur Datierung von Evaporiten des Oberperm. Carinthia II, 164, Jahrgang 84:79–85

    Google Scholar 

  • Kushner DJ, Bayley ST (1963) The effect of pH on surface structure and morphology of the extreme halophile, Halobacterium cutirubrum. Can J Microbiol 9:53–65

    CAS  Google Scholar 

  • Landis GA (2001) Martian water: are there extant halobacteria on Mars? Astrobiology 1:161–164

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Varo G (1995) The photocycles of bacteriorhodopsin. Isr J Chem 35:365–385

    CAS  Google Scholar 

  • Lanyi JK (2005) Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta, Dec 9, 2005 [Epub ahead of print]

    Google Scholar 

  • Larsen H (1973) The halobacteria’s confusion to biology. The fourth A. J. Kluyver memorial lecture. Antonie van Leeuwenhoek 39:383–396

    Article  PubMed  CAS  Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262:9724–979

    PubMed  CAS  Google Scholar 

  • Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic archaea and visualization of environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886

    Article  PubMed  CAS  Google Scholar 

  • Leuko S, Legat A, Fendrihan S, Wieland H, Radax C, Gruber C, Pfaffenhuemer M, Weidler G, Stan-Lotter H (2005) Isolation of viable haloarchaea from ancient salt deposits and application of fluorescent stains for in situ detection of halophiles in hypersaline environmental samples and model fluid inclusions. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Cellular origins, life in extreme habitats and astrobiology (COLE), Seckbach J (ed) vol. 9, Adaptations to life at high salt concentrations in archaea, bacteria and eukarya. Springer Verlag, Heidelberg, New York, pp 91–104

    Google Scholar 

  • Lopez-Garcia P, St Jean A, Amils R, Charlebois RL (1995) Genomic stability in the archaea Haloferax volcanii and Haloferax mediterranei. J Bacteriol 177:1405–1408

    PubMed  CAS  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  PubMed  CAS  Google Scholar 

  • Mescher MF, Strominger JL (1976) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci USA 73:2687–2691

    Article  PubMed  CAS  Google Scholar 

  • Mohr V, Larsen H (1963) On the structural transformation and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J Gen Microbiol 31:267–280

    CAS  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  PubMed  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181

    Article  PubMed  CAS  Google Scholar 

  • Niemetz R, Karcher U, Kandler O, Tindall BJ, König H (1997) The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur J Biochem 249:905–911

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeck R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–236

    Article  Google Scholar 

  • Oren A (ed) (1999) Microbiology and Biogeochemistry of hypersaline environments. CRC Press, Boca Raton

    Google Scholar 

  • Oren A (ed) (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pedersen K (2000) Mini Review. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer F (1988) Genetics of halobacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, Vol II. CRC Press, Boca Raton, pp 105–133

    Google Scholar 

  • Pfeifer F, Krüger K, Röder R, Mayr A, Ziesche S, Offner S (1997) Gas vesicle formation in halophilic Archaea. Arch Microbiol 167:259–268

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer F (2004) Gas vesicle genes in halophilic archaea and bacteria. In: Ventosa A (ed) Halophilic Microorganisms. Springer Verlag Berlin, Heidelberg, pp 229–241

    Google Scholar 

  • Pieper U, Kapadia G, Mevarech M, Herzberg O (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6:75–88

    Article  PubMed  CAS  Google Scholar 

  • Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663

    PubMed  CAS  Google Scholar 

  • Radax C, Gruber G, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 63:31–34

    Article  PubMed  CAS  Google Scholar 

  • Reistad R (1970) On the composition and nature of the bulk protein of the extremely halophilic bacteria. Arch Microbiol 71:353–360

    CAS  Google Scholar 

  • Rieder R, Gellert R, Anderson RC, Bruckner J, Clark BC, Dreibus G, Economou T, Klingelhofer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wanke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306:1746–1749

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F (ed) (1988) Halophilic bacteria, vol I, vol II. CRC Press, Boca Raton

    Google Scholar 

  • Roedder E (1984) The fluids in salt. Amer Mineral 69:413–439

    CAS  Google Scholar 

  • Ross HNM, Grant WD, Harris JE (1985) Lipids in archaebacterial taxonomy. In: Goodfellow M, Minnekin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 289–299

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schidlowski M (1988) A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  CAS  Google Scholar 

  • Schidlowski M (2001) Search for morphologigal and biochemical vestiges of fossil life in extraterrestrial settings: utility of terrestrial evidence. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The Quest for the Conditions of Life. Springer Verlag, Berlin, Heidelberg, New York, pp 373–386

    Google Scholar 

  • Schleifer KH, Steber J, Mayer H (1982) Chemical composition and structure of the cell wall of Halococcus morrhuae. Zentrbl Bakteriol Mikrobiol Hyg I Abt Orig C3:171–178

    Google Scholar 

  • Shukla HD, DasSarma S (2004) Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 186:3182–3186

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Bowman EJ, Hochstein LI (1991) Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. Arch Biochem Biophys 284:116–119

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Sulzner M, Egelseer E, Norton CF, Hochstein LI (1993) Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits. Origins Life Evol Biosp 23:53–64

    Article  CAS  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Radax C, Gruber C, McGenity TJ, Legat A, Wanner G, Denner EBM (2000) The distribution of viable microorganisms in Permo-Triassic rock salt. In: Geertman RM (ed) SALT 2000. 8th world salt symposium. Elsevier Science BV, Amsterdam, pp 921–926

    Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Radax C, McGenity TJ, Legat A, Pfaffenhuemer M, Wieland H, Gruber C, Denner EBM (2004) From intraterrestrials to extraterrestrials – viable haloarchaea in ancient salt deposits. In: Ventosa A (ed) Halophilic microorganisms. Springer Verlag, Berlin, Heidelberg, New York, pp 89–102

    Google Scholar 

  • Stan-Lotter H, Leuko S, Legat A, Fendrihan S (2006) The assessment of the viability of halophilic microorganisms in natural communities. In: Oren A, Rainey F (eds) Methods in Microbiology. Extremophiles. Elsevier, Oxford (in press)

    Google Scholar 

  • Steinert K, Kroth-Pancic PG, Bickel-Sandkötter S (1995) Nucleotide sequence of the ATPase A- and B-subunits of the halophilic archaebacterium Haloferax volcanii and characterization of the enzyme. Biochim Biophys Acta 1249:137–144

    PubMed  Google Scholar 

  • Suenaga K, Tence M, Mory C, Colliex C, Kato H, Okazaki T, Shinohara H, Hirahara K, Bandow S, Iijima S (2000) Element-selective single atom imaging. Science 290:2280–2282

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–82

    Article  PubMed  CAS  Google Scholar 

  • Treiman AH, Gleason JD, Bogard DD (2000) The SNC meteorites are from Mars. Planet Space Sci 48:1213–1230

    Article  CAS  Google Scholar 

  • Varo G (2000) Analogies between halorhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1460:220–229

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A (ed) (2004). Halophilic microorganisms. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Vreeland RH, Hochstein LI (eds) (1993) The biology of halophilic bacteria. CRC Press, Boca Raton

    Google Scholar 

  • Vreeland RH, Piselli Jr AF, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195

    Article  PubMed  CAS  Google Scholar 

  • Zharkov MA (1981) History of Paleozoic Salt Accumulation. Springer Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Stan-Lotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fendrihan, S. et al. (2006). Extremely halophilic archaea and the issue of long-term microbial survival. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_8

Download citation

Publish with us

Policies and ethics