Skip to main content

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 6))

  • 307 Accesses

Abstract

Signal peptide peptidases (SPPs) are the most recently identified members of a protease family of integral membrane proteins that includes the intensively studied presenilin 1 (PS1) and presenilin (PS2) proteins. There are 5 human genes encoding SPPs which can be divided into two branches based on homology and initial functional studies. One branch, which is the focus of this chapter, consists of the SPP and SPPL3 proteins. The second branch will be the focus of a subsequent chapter, and consists of the three SPPL2 proteins (SPPL2a, b, and c). The SPP proteins are conserved through evolution with family members found in fungi, archaea and plants. Presenilins (PSs) and SPPs cleave substrate polypeptides within a transmembrane region, but differ in that PSs cleave type 1 membrane proteins whereas SPPs cleave type 2 membrane proteins. SPPs and PSs have low overall sequence homology, yet exhibit considerable structural similarity as well as strict conservation of several small motifs. They are both multipass membrane proteins that contain two conserved active site motifs YD and GxGD in adjacent membrane-spanning domains and a conserved PAL motif of unknown function near their C-termini. They differ in that the active site topology of SPPs is inverted relative to PSs. Moreover, SPP and SPPL3 appear to function as proteases without the need for additional cofactors. In contrast, PSs function as the UPgamma-secretase protease only when complexed with three accessory proteins. Although the biological roles of PSs are reasonably well understood, the biological roles of SPP are largely unknown, and only a few endogenous substrates for SPP have been identified. SPP and possibly SPPL3 appear to cleave a number of endogenous type 2 signal peptides and these genes are essential genes in the development of several model organisms. In addition, in many human parasites, there is only a single SPP gene that is most closely related to the human SPP. Thus, SPPs may be novel antiviral drug targets in humans and represent a novel drug target for major human pathogens such as malaria

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait-Goughoulte M., Hourioux C., Patient R., Trassard S.,Brand D. and Roingeard P. (2006) Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly. J Gen Virol 87, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Beher D. and Graham S. L. (2005) Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opin Investig Drugs 14, 1385–1409.

    Article  PubMed  CAS  Google Scholar 

  • Bray S. J. (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7, 678–689.

    Article  PubMed  CAS  Google Scholar 

  • Casso D. J., Tanda S., Biehs B.,Martoglio B. and Kornberg T. B. (2005) Drosophila signal Peptide peptidase is an essential protease for larval development. Genetics 170, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Clarke E. E., Churcher I., Ellis S., Wrigley J. D., Lewis H. D., Harrison T.,Shearman M. S. and Beher D. (2006) Intra- or intercomplex binding to the gamma-secretase enzyme. A model to differentiate inhibitor classes. J Biol Chem 281, 31279–31289.

    Article  PubMed  CAS  Google Scholar 

  • Cupers P., Bentahir M., Craessaerts K., Orlans I., Vanderstichele H., Saftig P.,De Strooper B. and Annaert W. (2001) The discrepancy between presenilin subcellular localization and gamma-secretase processing of amyloid precursor protein. J Cell Biol 154, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., Schroeter E. H., Schrijvers V., Wolfe M. S., Ray W. J., Goate A. and Kopan R. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.

    Article  CAS  Google Scholar 

  • Dev K. K., Chatterjee S., Osinde M., Stauffer D., Morgan H., Kobialko M., Dengler U.,Rueeger H., Martoglio B. and Rovelli G. (2006) Signal peptide peptidase dependent cleavage of type II transmembrane substrates releases intracellular and extracellular signals. Eur J Pharmacol 540, break 10–17.

    Article  PubMed  CAS  Google Scholar 

  • Dovey H.,Varghese J. and Anderson J. P. (2000) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in the brain. J Neurochem 76, 1–10.

    Google Scholar 

  • Edbauer D., Winkler E., Regula J. T., Pesold B.,Steiner H. and Haass C. (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Fluhrer R., Grammer G., Israel L., Condron M. M., Haffner C., Friedmann E., Bohland C., Imhof A., Martoglio B.,Teplow D. B. and Haass C. (2006) A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b. Nat Cell Biol 8, 894–896.

    Article  PubMed  CAS  Google Scholar 

  • Fortini M. E. (2001) Notch and presenilin: a proteolytic mechanism emerges. Curr Opin Cell Biol 13, 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Fraering P. C., LaVoie M. J., Ye W., Ostaszewski B. L., Kimberly W. T., Selkoe D. J. and Wolfe M. S. (2004) Detergent-dependent dissociation of active gamma-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex. Biochemistry 43, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Francis R., McGrath G., Zhang J., Ruddy D. A., Sym M., Apfeld J., Nicoll M., Maxwell M.,Hai B., Ellis M. C., Parks A. L., Xu W., Li J., Gurney M., Myers R. L., Himes C. S., Hiebsch R., Ruble C.,Nye J. S. and Curtis D. (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3, hbox{85–97}.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann E., Lemberg M. K., Weihofen A., Dev K. K., Dengler U.,Rovelli G. and Martoglio B. (2004) Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. J Biol Chem 279, 50790–50798.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann E., Hauben E., Maylandt K., Schleeger S., Vreugde S., Lichtenthaler S. F., Kuhn P. H., Stauffer D.,Rovelli G. and Martoglio B. (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8, 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Gallio M., Sturgill G.,Rather P. and Kylsten P. (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Natl Acad Sci U S A 99, 12208–12213.

    Article  PubMed  CAS  Google Scholar 

  • Golde T. E. and Eckman C. B. (2003) Physiologic and pathologic events mediated by intramembranous and juxtamembranous proteolysis. Sci STKE 2003, RE4.

    Google Scholar 

  • Grigorenko A. P., Moliaka Y. K., Korovaitseva G. I. and Rogaev E. I. (2002) Novel class of polytopic proteins with domains associated with putative protease activity. Biochemistry (Mosc) 67, 826–835.

    Article  CAS  Google Scholar 

  • Grigorenko A. P., Moliaka Y. K., Soto M. C., Mello C. C. and Rogaev E. I. (2004) The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc Natl Acad Sci U S A 101, 14955–14960.

    Article  PubMed  CAS  Google Scholar 

  • Hadland B. K., Manley N. R., Su D., Longmore G. D., Moore C. L., Wolfe M. S., Schroeter E. H. and Kopan R. (2001) Gamma -secretase inhibitors repress thymocyte development. Proc Natl Acad Sci U S A 98, 7487–7491.

    Article  PubMed  CAS  Google Scholar 

  • Hope R. G., McElwee M. J. and McLauchlan J. (2006) Efficient cleavage by signal peptide peptidase requires residues within the signal peptide between the core and E1 proteins of hepatitis C virus strain J1. J Gen Virol 87, 623–627.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly W. T., LaVoie M. J., Ostaszewski B. L., Ye W.,Wolfe M. S. and Selkoe D. J. (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100, 6382–6387.

    Article  PubMed  CAS  Google Scholar 

  • Kinch L. N., Ginalski K. and Grishin N. V. (2006) Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Sci 15, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Kopan R. and Ilagan M. X. (2004) Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Krawitz P., Haffner C., Fluhrer R., Steiner H.,Schmid B. and Haass C. (2005) Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenlin in homologues SPPL2b and SPPL3. J Biol Chem 280, 39515–39523.

    Article  PubMed  CAS  Google Scholar 

  • Landman N. and Kim T. W. (2004) Got RIP? Presenilin-dependent intramembrane proteolysis in growth factor receptor signaling. Cytokine Growth Factor Rev 15, 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Lanz T. A., Himes C. S., Pallante G., Adams L., Yamazaki S.,Amore B. and Merchant K. M. (2003) The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther 305, 864–871.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie M. J., Fraering P. C., Ostaszewski B. L., Ye W., Kimberly W. T., Wolfe M. S. and Selkoe D. J. (2003) Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem 278, 37213–37222.

    Article  PubMed  CAS  Google Scholar 

  • Lee J. R., Urban S.,Garvey C. F. and Freeman M. (2001) Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Lemberg M. K. and Martoglio B. (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Lemberg M. K., Bland F. A., Weihofen A.,Braud V. M. and Martoglio B. (2001) Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J Immunol 167, 6441–6446.

    PubMed  CAS  Google Scholar 

  • Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., DiMuzio-Mower J., Harrison T., Lellis C.,Nadin A., Neduvelil J. G., Register R. B., Sardana M. K., Shearman M. S., Smith A. L., Shi X. P., Yin K. C., Shafer J. A. and Gardell S. J. (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J., Lilley B. N., Spooner E., Noriega V.,Tortorella D. and Ploegh H. L. (2006) Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441, 894–897.

    Article  PubMed  CAS  Google Scholar 

  • Louvi A. and Artavanis-Tsakonas S. (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Majeau N., Gagne V.,Bolduc M. and Leclerc D. (2005) Signal peptide peptidase promotes the formation of hepatitis C virus non-enveloped particles and is captured on the viral membrane during assembly. J Gen Virol 86, 3055–3064.

    Article  PubMed  CAS  Google Scholar 

  • Marambaud P., Wen P. H., Dutt A., Shioi J., Takashima A.,Siman R. and Robakis N. K. (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114, 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Marlow L., Canet R. M., Haugabook S. J., Hardy J. A., Lahiri D. K. and Sambamurti K. (2003) APH1, PEN2, and Nicastrin increase Abeta levels and gamma-secretase activity. Biochem Biophys Res Commun 305, 502–509.

    Article  PubMed  CAS  Google Scholar 

  • Martoglio B. (2003) Intramembrane proteolysis and post-targeting functions of signal peptides. Biochem Soc Trans 31, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • McLauchlan J., Lemberg M. K., Hope G. and Martoglio B. (2002) Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980–3988.

    Article  PubMed  CAS  Google Scholar 

  • McQuibban G. A., Saurya S. and Freeman M. (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Murakami D., Okamoto I., Nagano O., Kawano Y., Tomita T., Iwatsubo T.,De Strooper B.,Yumoto E. and Saya H. (2003) Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 22, 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  • Nyborg A. C., Jansen K., Ladd T. B., Fauq A. and Golde T. E. (2004a) A signal peptide peptidase (SPP) reporter activity assay based on the cleavage of type II membrane protein substrates provides further evidence for an inverted orientation of the SPP active site relative to presenilin. J Biol Chem 279, 43148–43156.

    Article  CAS  Google Scholar 

  • Nyborg A. C., Ladd T. B., Jansen K.,Kukar T. and Golde T. E. (2006a) Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB J 20, 1671–1679.

    Article  CAS  Google Scholar 

  • Nyborg A. C., Ladd T. B., Zwizinski C. W., Lah J. J. and Golde T. E. (2006b) Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener 1, 3.

    Article  CAS  Google Scholar 

  • Nyborg A. C., Kornilova A. Y., Jansen K., Ladd T. B., Wolfe M. S. and Golde T. E. (2004b) Signal peptide peptidase forms a homodimer that is labeled by an active site-directed gamma-secretase inhibitor. J Biol Chem 279, 15153–15160.

    Google Scholar 

  • Okamoto I., Kawano Y., Murakami D., Sasayama T., Araki N., Miki T.,Wong A. J. and Saya H. (2001) Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 155, 755–762.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I., Tsuiki H., Kenyon L. C., Godwin A. K., Emlet D. R., Holgado-Madruga M., Lanham I. S., Joynes C. J., Vo K. T., Guha A., Matsumoto M., Ushio Y.,Saya H. and Wong A. J. (2002) Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol 160,441–447.

    Google Scholar 

  • Okamoto K., Moriishi K.,Miyamura T. and Matsuura Y. (2004) Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol 78, 6370–6380.

    Article  PubMed  CAS  Google Scholar 

  • Parent A. T., Barnes N. Y., Taniguchi Y.,Thinakaran G. and Sisodia S. S. (2005) Presenilin attenuates receptor-mediated signaling and synaptic function. J Neurosci 25, 1540–1549.

    Article  PubMed  CAS  Google Scholar 

  • Ponting C. P., Hutton M., Nyborg A., Baker M.,Jansen K. and Golde T. E. (2002) Identification of a novel family of presenilin homologues. Hum Mol Genet 11, 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  • Rawson R. B., Zelenski N. G., Nijhawan D., Ye J., Sakai J., Hasan M. T., Chang T. Y., Brown M. S. and Goldstein J. L. (1997) Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Rudner D. Z., Fawcett P. and Losick R. (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci U S A 96, 14765–14770.

    Article  PubMed  CAS  Google Scholar 

  • Sato T., Nyborg A. C., Iwata N., Diehl T. S., Saido T. C., Golde T. E. and Wolfe M. S. (2006) Signal peptide peptidase: biochemical properties and modulation by nonsteroidal antiinflammatory drugs. Biochemistry 45, 8649–8656.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert D., Bradley J. D., Rominger C. M., Rominger D. H., Yang F., Meredith J. E., Jr., Wang Q., Roach A. H., Thompson L. A., Spitz S. M., Higaki J. N., Prakash S. R., Combs A. P., Copeland R. A., Arneric S. P., Hartig P. R., Robertson D. W., Cordell B., Stern A. M., Olson R. E. and Zaczek R. (2000) Presenilin-1 and -2 are molecular targets for gamma -secretase inhibitors. J Biol Chem 275, 34086–34091.

    Article  PubMed  CAS  Google Scholar 

  • Shah S., Lee S. F., Tabuchi K., Hao Y. H., Yu C., LaPlant Q., Ball H., Dann C. E., 3rd, Sudhof T. and Yu G. (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122, 435–447.

    Article  PubMed  CAS  Google Scholar 

  • Siemers E., Skinner M., Dean R. A., Gonzales C., Satterwhite J., Farlow M.,Ness D. and May P. C. (2005) Safety, Tolerability, and Changes in Amyloid beta Concentrations After Administration of a gamma-Secretase Inhibitor in Volunteers. Clin Neuropharmacol 28, 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Siemers E. R., Quinn J. F., Kaye J., Farlow M. R., Porsteinsson A., Tariot P., Zoulnouni P.,Galvin J. E., Holtzman D. M., Knopman D. S., Satterwhite J., Gonzales C.,Dean R. A. and May P. C. (2006) Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66, 602–604.

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N., Tomita T., Hayashi I., Tsuruoka M., Niimura M., Takahashi Y.,Thinakaran G. and Iwatsubo T. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y.,Kim S. H. and Sisodia S. S. (2003) Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). J Biol Chem 278, 30425–30428.

    Article  PubMed  CAS  Google Scholar 

  • Targett-Adams P., Schaller T., Hope G., Lanford R. E., Lemon S. M., Martin A. and McLauchlan J. (2006) Signal Peptide Peptidase Cleavage of GB Virus B Core Protein Is Required for Productive Infection in Vivo. J Biol Chem 281, 29221–29227.

    Article  PubMed  CAS  Google Scholar 

  • Tsruya R., Schlesinger A., Reich A., Gabay L.,Sapir A. and Shilo B. Z. (2002) Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev 16, 222–234.

    Article  PubMed  CAS  Google Scholar 

  • Urban S.,Lee J. R. and Freeman M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Urny J.,Hermans-Borgmeyer I. and Schaller H. C. (2006) Cell-surface expression of a new splice variant of the mouse signal peptide peptidase. Biochim Biophys Acta 1759, 159–165.

    PubMed  CAS  Google Scholar 

  • Urny J.,Hermans-Borgmeyer I.,Gercken G. and Chica Schaller H. (2003) Expression of the presenilin-like signal peptide peptidase (SPP) in mouse adult brain and during development. Gene Expr Patterns 3, 685–691.

    Article  PubMed  CAS  Google Scholar 

  • van Es J. H., van Gijn M. E., Riccio O.,van den Born M., Vooijs M., Begthel H., Cozijnsen M., Robine S., Winton D. J., Radtke F. and Clevers H. (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963.

    Article  PubMed  CAS  Google Scholar 

  • Vauloup-Fellous C., Pene V.,Garaud-Aunis J., Harper F., Bardin S., Suire Y., Pichard E.,Schmitt A., Sogni P., Pierron G.,Briand P. and Rosenberg A. R. (2006) Signal peptide peptidase-catalyzed cleavage of hepatitis C virus core protein is dispensable for virus budding but destabilizes the viral capsid. J Biol Chem 281, 27679–27692.

    Article  PubMed  CAS  Google Scholar 

  • Wahrle S., Das P., Nyborg A. C., McLendon C., Shoji M., Kawarabayashi T., Younkin L. H., Younkin S. G. and Golde T. E. (2002) Cholesterol-Dependent gamma-Secretase Activity in Buoyant Cholesterol-Rich Membrane Microdomains. Neurobiol Dis 9, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Wang J., Beher D., Nyborg A. C., Shearman M. S., Golde T. E. and Goate A. (2006a) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J Neurochem 96, 218–227.

    Google Scholar 

  • Wang Y.,Zhang Y. and Ha Y. (2006b) Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180.

    Google Scholar 

  • Weihofen A., Binns K., Lemberg M. K., Ashman K. and Martoglio B. (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S. and Kopan R. (2004) Intramembrane proteolysis: theme and variations. Science 305, 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W. M., Ostaszewski B. L., Diehl T. S., Kimberly W. T. and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Ye J., Dave U. P., Grishin N. V., Goldstein J. L. and Brown M. S. (2000) Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc Natl Acad Sci U S A 97, 5123–5128.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., Song Y. Q., Rogaeva E.,Chen F., Kawarai T., Supala A., Levesque L., Yu H., Yang D. S., Holmes E., Milman P., Liang Y.,Zhang D. M., Xu D. H., Sato C., Rogaev E., Smith M., Janus C., Zhang Y., Aebersold R., Farrer L. S., Sorbi S., Bruni A.,Fraser P. and St George-Hyslop P. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Golde, T.E., Zwizinski, C., Nyborg, A. (2007). Signal Peptide Peptidases. In: Hooper, N.M., Lendeckel, U. (eds) Intramembrane-Cleaving Proteases (I-CLiPs). Proteases in Biology and Disease, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6311-4_2

Download citation

Publish with us

Policies and ethics