Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

A fundamental characteristic of cancer cells is suppression of apoptosis and increased cell survival.1,2 These properties, when combined with deregulated cell proliferation, are the basic requirements for development of cancer. Increased deregulated cell proliferation by itself paradoxically may trigger cell death pathways which prevent outgrowth of the cancer cell unless the cell death pathways are inhibited.3 Another consequence of the latter may be resistance to treatments that depend on induction of apoptosis in the cancer cell. These widely held concepts have given rise to intense study of the antiapoptotic mechanisms generated in different cancer cells that are driven by different oncogenic stimuli and how these mechanisms may operate against different therapies used against cancers. The mechanisms by which different therapies induce apoptosis are in turn poorly understood and answers to both questions are needed in development of effective treatment approaches. In the following sections, we review recent information about regulation of apoptosis, how oncogenes interact with apoptotic pathways, and some of the therapeutic opportunities that are developing as a consequence of this information. Emphasis is given to studies on melanoma as a model system in these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cory, S. and Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9), 647–656.

    CAS  Google Scholar 

  2. Green, D. R. and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1(1), 19–30.

    CAS  Google Scholar 

  3. Lowe, S. W., Cepero, E., and Evans, G. (2004). Intrinsic tumour suppression. Nature 432, 307–315.

    CAS  Google Scholar 

  4. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290(5493), 989–992.

    CAS  Google Scholar 

  5. Bellosillo, B., Villamor, N., Lopez-Guillermo, A., Marce, S., Bosch, F., Campo, E., Montserrat, E., and Colomer, D. (2002). Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 100(5), 1810–1816.

    CAS  Google Scholar 

  6. Deng, Y., Lin, Y., and Wu, X. (2002). TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16, 33–45.

    CAS  Google Scholar 

  7. Zamzami, N. and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora’s box opens. Mol Cell Biol 2, 67–71.

    CAS  Google Scholar 

  8. Puthalakath, H. and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9(5), 505–512.

    CAS  Google Scholar 

  9. Willis, S. N. and Adams, J. M. (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17, 617–625.

    CAS  Google Scholar 

  10. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S. and Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3), 183–192.

    CAS  Google Scholar 

  11. Trapani, J. A. and Sutton, V. R. (2003). Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 15(5), 533–543.

    CAS  Google Scholar 

  12. Ley, R., Hadfield, K., Howes, E., and Cook, S. J. (2005). Identification of a DEF-type docking domain for extracellular signal-regulated kinases 1/2 that directs phosphorylation and turnover of the BH3-only protein BimEL. J Biol Chem 280(18), 17657–17663.

    CAS  Google Scholar 

  13. Ley, R., Ewings, K. E., Hadfield, K., Howes, E., Balmanno, K., and Cook, S. J. (2004). Extracellular signal-regulated kinases 1/2 are serum-stimulated “Bim(EL) kinases” that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover. J Biol Chem 279(10), 8837–8847.

    CAS  Google Scholar 

  14. Puthalakath, H., Villunger, A., O’Reilly, L. A., Beaumont, J. G., Coultas, L., Cheney, R. E., Huang, D. C. and Strasser, A. (2001). Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis, Science 293(5536), 1829–1832.

    CAS  Google Scholar 

  15. Collins, N. L., Reginato, M. J., Paulus, J. K., Sgroi, D. C., Labaer, J., and Brugge, J. S. (2005). G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol Cell Biol 25(12), 5282–5291.

    CAS  Google Scholar 

  16. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., and Green, D. R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741), 1732–1735.

    CAS  Google Scholar 

  17. Leu, J. I.-J., Dumont, P., Hafey, M., Murphy, M. E. and George, D. L. (2004). Mitochondrial p53 activates Bak and causes disruption of Bak-Mcl1 complex. Nat Cell Biol 6, 443–450.

    CAS  Google Scholar 

  18. Moll, U. M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic function of p53. Curr Opin Cell Biol 17(6), 631–636.

    CAS  Google Scholar 

  19. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M., and Huang, D. C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3), 393–403.

    CAS  Google Scholar 

  20. Fernandez, Y., Verhagen, M., Miller, T. P., Rush, J. L., Steiner, P., Opipari, A. W., Jr., Lowe, S. W. and Soengas, M. S. (2005). Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65(14), 6294–6304.

    CAS  Google Scholar 

  21. Qin, J. Z., Stennett, L., Bacon, P., Bodner, B., Hendrix, M. J., Seftor, R. E., Seftor, E. A., Margaryan, N. V., Pollock, P. M., Curtis, A., Trent, J. M., Bennett, F., Miele, L., and Nickoloff, B. J. (2004). p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol Cancer Ther 3(8), 895–902.

    CAS  Google Scholar 

  22. Tinel, A. and Tschopp, J. (2004). The PIDDosome: a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304(5672), 843–846.

    CAS  Google Scholar 

  23. Gao, Z., Shao, Y., and Jiang, X. (2005). Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J Biol Chem 280(46), 38271–38275.

    CAS  Google Scholar 

  24. Zhivotovsky, B. and Orrenius, S. (2005). Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331, 859–867.

    CAS  Google Scholar 

  25. Shin, S., Lee, Y., Kim, W., Ko, H., Choi, H., and Kim, K. (2005). Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J 24, 3532–3542.

    CAS  Google Scholar 

  26. Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen, G. S., and Reed, J. C. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17(8), 2215–2223.

    CAS  Google Scholar 

  27. Verhagen, A. M., Coulson, E. J. and Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2(7), 3009.1–3009.10.

    Google Scholar 

  28. Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64(20), 7183–7190.

    CAS  Google Scholar 

  29. Vaux, D. L. and Silke, J. (2005). IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6(4), 287–297.

    CAS  Google Scholar 

  30. Zhang, X. D., Zhang, X. Y., Gray, C. P., Nguyen, T., and Hersey, P. (2001). Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res 61(19), 7339–7348.

    CAS  Google Scholar 

  31. Massague, J. (2004). G1 cell-cycle control and cancer. Nature 432, 298–306.

    CAS  Google Scholar 

  32. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W. C., Leung, S. Y., Yen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R., and Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. Nature 417, 949–954.

    CAS  Google Scholar 

  33. Pavey, S., Johansson, P., Packer, L., Taylor, J., Stark, M., Pollock, P. M., Walker, G. J., Boyle, G. M., Harper, U., Cozzi, S. J., Hansen, K., Yudt, L., Schmidt, C., Hersey, P., Ellem, K. A. O., O’Rourke, M. G. E., Parsons, P. G., Meltzer, P., Ringner, M., and Hayward, N. K. (2004).Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23, 4060–4067.

    Google Scholar 

  34. Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., Moses, T. Y., Hostetter, G., Wagner, U., Kakareka, J., Salem, G., Pohida, T., Heenan, P., Duray, P., Kallioniemi, O., Hayward, N. K., Trent, J. M., and Meltzer, P. S. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33(1), 19–20.

    CAS  Google Scholar 

  35. Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., Majoor, D. M., Shay, J. W., Mooi, W. J., and Peeper, D. S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051), 720–724.

    CAS  Google Scholar 

  36. Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H., Cho, K. H., Aiba, S., Brocker, E. B., LeBoit, P. E., Pinkel, D., and Bastian, B. C. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20), 2104–2107.

    Google Scholar 

  37. Bachmann, I. M., Straume, O. and Akslen, L. A. (2004). Altered expression of cell cycle regulators Cyclin D1, p14, p16, CDK4 and Rb in nodular melanomas. Int J Oncol 25(6), 1559–1565.

    CAS  Google Scholar 

  38. Halaban, R. (2005). Rb/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Rev 24(2), 339–356.

    CAS  Google Scholar 

  39. Thompson, J. F., Scolyer, R. A., and Kefford, R. F. (2005). Cutaneous melanoma. Lancet 365, 687–701.

    CAS  Google Scholar 

  40. Albino, A. P., Vidal, M. J., McNutt, N. S., Shea, C. R., Prieto, V. G., Nanus, D. M., Palmer, J. M., and Hayward, N. K. (1994). Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 4, 35–45.

    CAS  Google Scholar 

  41. Vogelstein, B. and Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nat Med 10(8), 789–799.

    CAS  Google Scholar 

  42. Zerp, S. F., van Elsas, A., Peltenburg, L. T. C., and Schrier, P. I. (1999). p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Brit J Cancer 79, 921–926.

    CAS  Google Scholar 

  43. Whiteman, D. C., Parsons, P. G., and Green, A. C. (1998). p53 expression and risk factors for cutaneous melanoma: a case-control study. Int J Cancer 77(6), 843–848.

    CAS  Google Scholar 

  44. Purdue, M. P., From, L., Kahn, H. J., Armstrong, B. K., Kricker, A., Gallagher, R. P., McLaughlin, J. R., Klar, N. S. and Marrett, L. D. (2005). Etiologic factors associated with p53 immunostaining in cutaneous malignant melanoma. Int J Cancer 117, 486–493.

    CAS  Google Scholar 

  45. Satyamoorthy, K., Chehab, N. H., Waterman, M. J. F., Lien, M. C., el-Deiry, W. S., Herlyn, M., and Halazonetis, T. D. (2000). Aberrant regulation and function of Wild-type p53 in radioresistant melanoma cells. Cell Growth Differ 11, 467–474.

    CAS  Google Scholar 

  46. Ghosh, A., Stewart, D., and Matlashewski, G. (2004). Regulation of human p53 activity and cell localization by alternative splicing, Mol Cell Biol 24(18), 7987–7997.

    CAS  Google Scholar 

  47. Zhuang, L. (2006) (in preparation).

    Google Scholar 

  48. Niu, G., Bowman, T., Huang, M., Shivers, S., Reintgen, D., Daud, A., Chang, A., Kraker, A., Jove, R., and Yu, H. (2002). Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21(46), 7001–7010.

    CAS  Google Scholar 

  49. Jing, N. and Tweardy, D. J. (2005). Targeting Stat3 in cancer therapy. Anticancer Drugs 16(6), 601–607.

    CAS  Google Scholar 

  50. Kobayashi, S., Werneburg, N. W., Bronk, S. F., Kaufmann, S. H., and Gores, G. J. (2005). Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128(7), 2054–2065.

    CAS  Google Scholar 

  51. Yu, C., Bruzek, L. M., Meng, X. W., Gores, G. J., Carter, C. A., Kaufmann, S. H. and Adjei, A. A. (2005). The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene 24(46), 6861–6869.

    CAS  Google Scholar 

  52. Zhong, Q., Gao, W., Du, F., and Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121(7), 1085–1095.

    CAS  Google Scholar 

  53. Shmueli A. and Oren, M. (2005). Life, death, and ubiquitin: taming the mule. Cell 121(7), 963–965.

    CAS  Google Scholar 

  54. McGill, G. G., Horstmann, M., Widlund, H. R., Du, J., Motyckova, G., Nishimura, E. K., Lin, Y. L., Ramaswamy, S., Avery, W., Ding, H. F., Jordan, S. A., Jackson, I. J., Korsmeyer, S. J., Golub, T. R., and Fisher, D. E. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718.

    CAS  Google Scholar 

  55. Janku, F., Novotny, J., Julis, I., Julisova, I., Pecen, L., Tomancova, V., Kocmanova, G., Krasna, L., Krajsova, I., Stork, J., and Petruzelka, L. (2005). KIT receptor is expressed in more than 50% of early-stage malignant melanoma: a retrospective stud of 261 patients. Melanoma Res 15(4), 251–256.

    CAS  Google Scholar 

  56. Leslie, M. C. and Bar-Eli, M. (2005). Regulation of gene expression in melanoma: new approaches for treatment. J Cell Biochem 94(1), 25–38.

    CAS  Google Scholar 

  57. Karjalainen, J. M., Kellokoski, J. K., Eskelinen, M. J., Alhava, E. M., and Kosma, V. M. (1998). Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol 16(11), 3584–3591.

    CAS  Google Scholar 

  58. McPherson, L. A., Loktev, A. V., and Weigel, R. J. (2002). Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem 277(47), 45028–45033.

    CAS  Google Scholar 

  59. Smalley, K. S. M. (2003). A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 104, 527–532.

    CAS  Google Scholar 

  60. Zhang, X. D., Borrow, J. M., Zhang, X. Y., Nguyen, T., and Hersey, P. (2003). Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 222, 869–2881.

    Google Scholar 

  61. Boucher, M.-J., Morisset, J., Vachon, P. H., Reed, J. C., Laine, J., and Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-XL and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biol 79, 355–369.

    CAS  Google Scholar 

  62. Zhuang, L., Lee, C. S., Scolyer, R. A., McCarthy, S. W., Palmer, A. A., Zhang, X. D., Thompson, J. F., Bron, L. P. and Hersey, P. (2005). Activation of the extracellular-signal related kinase (ERK) pathway in human melanoma. J Clin Pathol 58(11), 1163–1169.

    CAS  Google Scholar 

  63. Govindarajan, B., Bai, X., Cohen, C., Zhong, H., Kilroy, S., Louis, G., Moses, M., and Arbiser, J. L. (2003). Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. J Biol Chem 278(11), 9790–9795.

    CAS  Google Scholar 

  64. Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., Ye, Q., Lobo, M., She, Y., Osman, I., Golub, T. R., Sebolt-Leopold, J., Sellers, W. R. and Rosen, N. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362.

    CAS  Google Scholar 

  65. Flaherty (2005). 6th World Congress on Melanoma, Vancouver, British Columbia.

    Google Scholar 

  66. Woods, D., Cherwinski, H., Venetsanakos, E., Bhat, A., Gysin, S., Humbert, M., Bray, P. F., Saylor, V. L., and McMahon, M. (2001). Induction of S3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 21(9), 3192–3205.

    CAS  Google Scholar 

  67. Aplin, A. E., Stewart, S. A., Assoian, R. K., and Juliano, R. L. (2001). Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 153(2), 273–282.

    CAS  Google Scholar 

  68. Ley, R., Ewings, K. E., Hadfield, K., and Cook, S. J. (2005). Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 12, 1008–1014.

    CAS  Google Scholar 

  69. Townsend, K. J., Zhou, P., Qian, L., Bieszczad, C. K., Lowrey, C. H., Yen, A., and Craig, R. W. (1999). Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation. J Biol Chem 274(3), 1801–1813.

    CAS  Google Scholar 

  70. Wellbrock, C. and Marais, R. (2005). Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol 170(5), 703–708.

    CAS  Google Scholar 

  71. Robertson, G. P. (2005). Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev 24(2), 273–285.

    CAS  Google Scholar 

  72. Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 307, 1098–1101.

    CAS  Google Scholar 

  73. Dai, D. L., Martinka, M., and Li, G. (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23(7), 1473–1482.

    CAS  Google Scholar 

  74. Brazil, D. P. and Hemmings, B. A. (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11), 657–664.

    CAS  Google Scholar 

  75. Amiri, K. I. and Richmond, A. (2005). Role of nuclear factor-kB in melanoma. Cancer Metastasis Rev 24, 301–313.

    CAS  Google Scholar 

  76. Parsons, D. W., Wang, T. L., Samuels, Y., Bardelli, A., Cummins, J. M., DeLong, L., Silliman, N., Ptak, J., Szabo, S., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., Lengauer, C., and Velculescu, V. E. (2005). Colorectal cancer: mutations in a signalling pathway. Nature 436(7052), 792.

    CAS  Google Scholar 

  77. Pollock, P. M., Walker, G. J., Glendening, J. M., Que Noy, T., Bloch, N. C., Fountain, J. W., and Hayward, N. K. (2002). PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res 12(6), 565–575.

    CAS  Google Scholar 

  78. Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    CAS  Google Scholar 

  79. Newton, A. C. (1995). Protein kinase C: structure, function, and regulation. J Biol Chem 270, 28495–28498.

    CAS  Google Scholar 

  80. Majumder, P. K., Pandey, P., Sun, X., Cheng, K., Datta, R., Saxena, S., Kharbanda, S., and Kufe, D. (2000). Mitochondrial translocation of protein kinase Ct in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 275(29), 21793–21796.

    CAS  Google Scholar 

  81. Li, L., Lorenzo, P. S., Bogi, K., Blumberg, P. M. and Yuspa, S. H. (1999). Protein kinase targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector Ce. Mol Cell Biol 19, 8547–8558.

    CAS  Google Scholar 

  82. Fujii, T., Garcia-Bermejo, M. L., Bernabo, J. L., Caamano, J., Ohba, M., Kuroki, T., Li, I., Yuspa, S. H., and Kazanietz, M. G. (2000). Involvement of protein kinase Cn (PKC ) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCa. J Biol Chem 275, 7574–7582.

    CAS  Google Scholar 

  83. Shinohara, H., Kayagaki, N., Yagita, H., Oyaizu, N., Ohba, M., Kuroki, T., and Ikawa, Y. (2001). A protective role of PKCª against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in glioma cells. Biochem Biophys Res Commun 284, 1162–1167.

    CAS  Google Scholar 

  84. Whelan, R. D. and Parker, P. J. (1998). Loss of protein kinase C function induces an apoptotic response. Oncogene 16, 1939–1944.

    CAS  Google Scholar 

  85. Matassa, A. A., Kalkofen, R. L., Carpenter, L., Biden, T. J., and Reyland, M. E. (2003). Inhibition of PKC induces a PKC -dependent apoptotic program in salivary epithelial cells. Cell Death Differ 10, 269–277.

    CAS  Google Scholar 

  86. Basu, A., Lu, D., Sun, B., Moor, A. N., Akkaraju, G. R., and Huang, J. (2002). Proteolytic activation of protein kinase C by caspase-mediated processing and transduction of antiapoptotic signals. J Biol Chem 277, 41850–41856.

    CAS  Google Scholar 

  87. Gomez-Angelats, M. and Cidlowski, J. A. (2001). Protein kinase C regulates FADD recruitment and death-inducing signaling complex formation in Fas/CD95-induced apoptosis. J Biol Chem 276, 44944–44952.

    CAS  Google Scholar 

  88. Sarker, M., Ruiz-Ruiz, C., and Lopez-Rivas, A. (2001). Activation of protein kinase C inhibits TRAIL-induced caspases activation mitochondrial events and apoptosis in a human leukemic T cell line. Cell Death Differ 8(2), 172–181.

    CAS  Google Scholar 

  89. Meng, W. H., Heldebrant, M. P., and Kaufmann, S. H. (2002). Phorbol 12-myristate 13-acetate inhibits death receptor-mediated apoptosis in Jurkat cells by disrupting recruitment of Fas-associated polypeptide with death domain. J Biol Chem 277, 3776–3783.

    CAS  Google Scholar 

  90. Harper, N., Hughes, M. A., Farrow, S. N., Cohen, G. M., and MacFarlane, M. (2003). Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J Biol Chem 278, 44338–44347.

    CAS  Google Scholar 

  91. Sarker, M., Ruiz-Ruiz, C., Robledo, G., and Lopez-Rivas, A. (2002). Stimulation of the mitogen-activated protein kinase pathway antagonizes TRAIL-induced apoptosis downstream of BID cleavage in human breast cancer MCF-7 cells. Oncogene 21(27), 4323–4327.

    CAS  Google Scholar 

  92. Gillespie, S., Zhang, X. D., and Hersey, P. (2005). Variable expression of protein kinase C in human melanoma cells regulates sensitivity to TRAIL-induced apoptosis. Mol Cancer Ther 4, 668–676.

    CAS  Google Scholar 

  93. Lei, K. and Davis, R. J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100(5), 2432–2437.

    CAS  Google Scholar 

  94. Brichese, L., Cazettes, G., and Valette, A. (2004). JNK is associated with Bcl-2 and PP1 in mitochondria: Paclitaxel induces its activation and its association with the phosphorylated form of Bcl-2. Cell Cycle 3(10), 1312–1319.

    CAS  Google Scholar 

  95. Tsuruta, F., Sunayama, J., Mori, Y., Hattori, S., Shimizu, S., Tsujimoto, Y., Yoshioka, K., Masuyama, N., and Gotoh, Y. (2004). JNK promotes Bax translocation to mitochondria through phosphorylation of 14–3–3 proteins. EMBO J 23(8), 1889–1899.

    CAS  Google Scholar 

  96. Molton, S. A., Todd, D. E., and Cook, S. J. (2003). Selective activation of the c-Jun-N-terminal kinase (JNK) pathway fails to elicit Bax activation or apoptosis unless the phosphoinositide 3’-kinase (PI3K) pathway is inhibited. Oncogene 22(30), 4690–4701.

    CAS  Google Scholar 

  97. Muhlenbeck, F., Schneider, P., Bodmer, J. L., Schwenzer, R., Hauser, A., Schubert, G., Scheurich, P., Moosmayer, D., Tschopp, J., and Wajant, H. (2000). The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275(41), 32208–32213.

    CAS  Google Scholar 

  98. Herr, I., Wilhelm, D., Meyer, E., Jeremias, I., Angel, P., and Debatin, K. M. (1999). JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ 6(2), 130–135.

    CAS  Google Scholar 

  99. Varfolomeev, E., Maecker, H., Sharp, D., Lawrence, D., Renz, M., Vucic, D. and Ashkenazi, A. (2005). Molecular determinants of kinase pathway activation by apo2 ligand/tumor necrosis factor related apoptosis-inducing ligand. J Biol Chem 280, 40599–40608.

    CAS  Google Scholar 

  100. Bharti, A. C. and Aggarwal, B. B. (2004). Ranking the role of RANK ligand in apoptosis. Apoptosis 9, 677–690.

    CAS  Google Scholar 

  101. Bogoyevitch, M. A., Boehm, I., Oakley, A., Ketterman, A. J., and Barr, R. K. (2004). Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim Biophys Acta 1697, 89–101.

    CAS  Google Scholar 

  102. Zhang, X. D., Wu, J. J., Gillespie, S., Borrow, J. and Hersey, P. (2006). Human melanoma cells selected for resistance to apoptosis by prolonged exposure to TRAIL are more vulnerable to necrotic cell death induced by Cisplatin. Clin Cancer Res 12, 1355–1364.

    CAS  Google Scholar 

  103. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18(11), 1272–1282.

    CAS  Google Scholar 

  104. Mhaidat, N. M., Zhang, X. D., Jiang, C. C., and Hersey, P. (2007). Docetaxel-induced apoptosis of human melanoma is mediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway. Clin cancer Res 13, 1308–1314.

    Google Scholar 

  105. Strumberg, D., Richly, H., Hilger, R. A., Schleucher, N., Korfee, S., Tewes, M., Faghih, M., Brendel, E., Voliotis, D., Haase, C. G., Schwartz, B., Awada, A., Voigtmann, R., Scheulen, M. E., and Seeber, S. (2005). Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol 23(5), 965–972.

    CAS  Google Scholar 

  106. LoRusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., Hanson, L., DeLuca, P., Bruzek, L., Piens, J., Asbury, P., VanBecelaere, K., Herrera, R., Sebolt-Leopold, J., and Meyer, M. B. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23(23), 5281–5293.

    CAS  Google Scholar 

  107. End, D. W., Smets, G., Todd, A. V., Applegate, T. L., Fuery, C. J., Angibaud, P., Venet, M., Sanz, G., Poignet, H., Skrzat, S., Devine, A., Wouters, W., and Bowden, C. (2001). Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61(1), 131–137.

    CAS  Google Scholar 

  108. Prevost, G. P., Pradines, A., Brezak, M. C., Lonchampt, M. O., Viossat, I., Ader, I., Toulas, C., Kasprzyk, P., Gordon, T., Favre, G. and Morgan, B. (2001). Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of human farnesyltransferase., BIM-46228. Int J Cancer 91(5), 718–722.

    CAS  Google Scholar 

  109. Smalley, K. S. and Eisen, T. G. (2003). Farnesyl transferase inhibitor SCH66336 is cytostatic pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int J Cancer 105(2), 165–175.

    CAS  Google Scholar 

  110. Wang, Y.F., Jiang, C. C., Kiejda, K. A., Gillespie, S., Zhang, X. D., and Hersey, P. (2007). Apoptosis Induction in Human Melanoma Cells by Inhibition of MEK is Caspase-Independent and Mediated by the Bcl-2 Family Members PUMA, Bim, and Mcl-1. Clin Cancer Res.

    Google Scholar 

  111. Ihle, N. T., Williams, R., Chow, S., Chew, W., Berggren, M. I., Paine-Murrieta, G., Minion, D. J., Halter, R. J., Wipf, P., Abraham, R., Kirkpatrick, L. and Powis, G. (2004). Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3(7), 763–772.

    CAS  Google Scholar 

  112. Smith, V., Sausville, E. A., Camalier, R. F., Fiebig, H. H., and Burger, A. M. (2005). Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother Pharmacol 56(2), 126–137.

    Google Scholar 

  113. Dou, F., Yuan, L. D., and Zhu, J. J. (2005). Heat shock protein 90 indirectly regulates ERK activity by affecting Raf protein metabolism. Acta Biochim Biophys Sin 37(7), 501–505.

    Google Scholar 

  114. Tang, H. J., Jin, X., Wang, S., Yang, D., Cao, Y., Chen, J., Gossett, D. R. and Lin, J. (2005). A small molecule compound inhibits AKT pathway in ovarian cancer cell lines. Gynecol. Oncol. Oct 3 (epub ahead of print).

    Google Scholar 

  115. Margolin, K., Longmate, J., Baratta, T., Synold, T., Christensen, S., Weber, J., Gajewski, T., Quirt, I., and Doroshow, J. H. (2005). CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104(5), 1045–1048.

    CAS  Google Scholar 

  116. Romano, M. F., Avellino, R., Petrella, A., Bisogni, R., Romano, S., and Venuta, S. (2004). Rapamycin inhibits doxorubicin-induced NF-kappaB/Rel nuclear activity and enhances the apoptosis of melanoma cells, Eur J Cancer 40(18), 2829–2836.

    CAS  Google Scholar 

  117. Amiri, K. I., Horton, L. W., LaFleur, B. J., Sosman, J. A., and Richmond, A. (2004). Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 64(14), 4912–4918.

    CAS  Google Scholar 

  118. Munshi, A., Kurland, J. F., Nishikawa, T., Chiao, P. J., Andreeff, M., and Meyn, R. E. (2004). Inhibition of constitutively activated nuclear factor-kappaB radiosensitizes human melanoma cells. Mol Cancer Ther 3(8), 985–992.

    CAS  Google Scholar 

  119. Siwak, D. R., Shishodia, S., Aggarwal, B. B., and Kurzrock, R. (2005). Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104(4), 879–890.

    CAS  Google Scholar 

  120. Tozer, R. G., Burdette-Radoux, S., Berlanger, K., Davis, M. L., Lohmann, R. C., Rusthoven, J. R., Wainman, N., Zee, B., Seymour, L. and National Cancer Institute of Canada Clinical Trials Group. (2002). A randomized phase II study of two schedules of bryostatin-1 (NSC339555) in patients with advanced malignant melanoma: a National Cancer Institute of Canada Clinical Trials Group study. Invest New Drugs 20(4), 407–412.

    CAS  Google Scholar 

  121. Bedikian, A. Y., Plager, C., Stewart, J. R., O’Brian, C. A., Herdman, S. K., Ross, M., Papadopoulos, N., Eton, O., Ellerhorst, J., and Smith, T. (2001). Phase II evaluation of bryostatin-1 in metastatic melanoma. Melanoma Res 11(2), 183–188.

    Google Scholar 

  122. Advani, R., Peethambaram, P., Lum, B. L., Fisher, G. A., Hartmann, L., Long, H. J., Halsey, J., Holmlund, J. T., Dorr, A. and Sikic, B. I. (2004). A phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 100(2), 321–326.

    CAS  Google Scholar 

  123. Swannie, H. C. and Kaye, S. B. (2002). Protein kinase C inhibitors. Curr Oncol Rep 4(1), 37–46.

    Google Scholar 

  124. Lopez-Bergami, P., Habelhah, H., Bhoumik, A., Zhang, W., Wang, L. H., and Ronai, Z. (2005). RACK1 mediates activation of JNK by protein kinase C. Mol Cell 19(3), 309–320.

    CAS  Google Scholar 

  125. Zhang, X. D., Gillespie, S. K., Borrow, J. M., and Hersey, P. (2004). The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3(4), 425–435.

    Google Scholar 

  126. Dokmanovic, M. and Marks, P. A. (2005). Prospects: histone deacetylase inhibitors. J Cell Biochem 96(2), 293–304.

    CAS  Google Scholar 

  127. Nguyen, T., Zhang, X. D. and Hersey, P. (2001). Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Clin Cancer Res 7 (Suppl 3), 966s–973s.

    Google Scholar 

  128. Hersey, P., Zhang, S. Y. and Zhang, X. D. (2005). Regulation of trail receptor expression in human melanoma. In: Cancer Drug Discovery and Development: Death Receptors in Cancer Therapy, ed. el-Deiry W. S. Humana Press, Totowa, NJ, pp. 175–187.

    Google Scholar 

  129. Zhang, X. Y., Zhang, X. D., Borrow, J. M., Nguyen, T. and Hersey, P. (2004). Translational control of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor expression in melanoma cells. J Biol Chem 279, 10606–10614.

    CAS  Google Scholar 

  130. Jin, Z., McDonald, E. R., III, Dicker, D. T. and el-Deiry, W. S. (2004). Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279(34), 35829–35239.

    Google Scholar 

  131. Shiraishi, T., Yoshida, T., Nakata, S., Horinaka, M., Wakada, M., Mizutani, Y., Miki, T., and Sakai, T. (2005). Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res 65(14), 6364–6370.

    CAS  Google Scholar 

  132. Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., Joseph, M. K., Kitada, S., Korsmeyer, S. J., Kunzer, A. R., Letai, A., Li, C., Mitten, M. J., Nettesheim, D. G., Ng, S., Nimmer, P. M., O’Connor, J. M., Oleksijew, A., Petros, A. M., Reed, J. C., Shen, W., Tahir, S. K., Thompson, C. B., Tomaselli, K. J., Wang, B., Wendt, M. D., Zhang, H., Fesik, S. W., and Rosenberg, S. H. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042), 677–681.

    Google Scholar 

  133. Karl, E., Warner, K., Zeitlin, B., Kaneko, T., Wurtzel, L., Jin, T., Chang, J., Wang, S., Wang, C. Y., Strieter, R. M., Nunez, G., Polverini, P. J., and Nor, J. E. (2005). Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. Cancer Res 65(12), 5063–5069.

    CAS  Google Scholar 

  134. Oliver, C. L., Miranda, M. B., Shangary, S., Land, S., Wang, S., and Johnson, D. E. (2005). (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 4(1), 23–31.

    Google Scholar 

  135. Jansen, B., Wacheck, V., Heere-Ress, E., Schlagbauer-Wadl, H., Hoeller, C., Lucas, T., Hoermann, M., Hollenstein, U., Wolff, K., and Pehamberger, H. (2000). Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356(9243), 1728–1733.

    Google Scholar 

  136. Bedikian, A. Y., Millward, M., Pehamberger, H., Conry, R., Gore, M., Trefzer, U., Pavlick, A. C., DeConti, R., Hersh, E. M., Hersey, P., et al. (2006). Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24, 4738–4745.

    CAS  Google Scholar 

  137. Zangemeister-Wittke, U., Leech, S. H., Olie, R. A., Simoes-Wust, A. P., Gautschi, O., Luedke, G. H., Natt, F., Haner, R., Martin, P., Hall, J., Nalin, C. M., and Stahel, R. A. (2000). A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 6(6), 2547–2555.

    Google Scholar 

  138. Heere-Ress, E., Thallinger, C., Lucas, T., Schlagbauer-Wadl, H., Wacheck, V., Monia, B. P., Wolff, K., Pehamberger, H., and Jansen, B. (2002). Bcl-X(L) is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int J Cancer 99(1), 29–34.

    CAS  Google Scholar 

  139. Wacheck, V., Losert, D., Gunsberg, P., Vornlocher, H. P., Hadwiger, P., Geick, A., Pehamberger, H., Muller, M., and Jansen, B. (2003). Small interfering RNA targeting bcl-2 sensitizes malignant melanoma. Oligonucleotides 13(5), 393–400.

    CAS  Google Scholar 

  140. Thallinger, C., Wolschek, M. F., Maierhofer, H., Skvara, H., Pehamberger, H., Monia, B. P., Jansen, B., Wacheck, V., and Selzer, E. (2004). Mcl-1 is a novel therapeutic target for human sarcoma: synergistic inhibition of human sarcoma xenotransplants by a combination of mcl-1 antisense oligonucleotides with low-dose cyclophosphamide. Clin Cancer Res 10(12 Pt 1), 4185–4191.

    Google Scholar 

  141. Schimmer, A. D., Welsh, K., Pinilla, C., Wang, Z., Krajewska, M., Bonneau, M. J., Pedersen, I. M., Kitada, S., Scott, E. L., Bailly-Maitre, B., Glinsky, G., Scudiero, D., Sausville, E., Salvesen, G., Nefzi, A., Ostresh, J. M., Houghten, R. A., and Reed, J. C. (2004). Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5(1), 25–35.

    CAS  Google Scholar 

  142. Fulda, S., Wick, W., Weller, M., and Debatink, K. M. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8), 808–815.

    CAS  Google Scholar 

  143. Arnt, C. R., Chiorean, M. V., Heldebrant, M. P., Gores, G. J., and Kaufmann, S. H. (2002). Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277(46), 44236–44243.

    CAS  Google Scholar 

  144. Guo, F., Nimmanapalli, R., Paranawithana, S., Wittman, S., Griffin, D., Bali, P., O’Bryan, E., Fumero, C., Wang, H. G., and Bhalla, K. (2002). Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99(9), 3419–3426.

    CAS  Google Scholar 

  145. Jiang, C. C., Chen, L. H., Gillespie, S., Kiejda, K. A., Mhaidat, N., Wang, Y. F., Thorne, R., Zhang, X. D., and Hersey, P. (2007). Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response. Cancer research 67, 5880–5888.

    CAS  Google Scholar 

  146. Zhu et al. Activation of JNK is a mediator of Vincristine-induced apoptosis in melanoma cells, under editorial review.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hersey, P., Zhang, X.D., Mhaidat, N. (2008). Overcoming Resistance to Apoptosis in Cancer Therapy. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_6

Download citation

Publish with us

Policies and ethics