Skip to main content

Part of the book series: Proteins And Cell Regulation ((PROR,volume 6))

Abstract

HDL, apoA-I, and apoA-I mimetic peptides have been shown to prevent LDL oxidation in cell-free systems and in the artery wall coculture studies. Moreover, HDL, apoA-I, and apoA-I mimetics have been shown to decrease lesions and improve vascular reactivity in animal models of atherosclerosis and in humans. The primary mechanism by which HDL and apoA-I and apoA-I mimetic peptides exert their beneficial effect has been presumed to be the enhancement of reverse cholesterol transport. However, apoA-I has also been shown to be capable of removing “seeding molecules” from LDL, thus preventing the oxidation of LDL-derived phospholipids to those that are thought to be responsible for the inflammatory response characteristic of atherosclerosis. D-4F is an apoA-I mimetic peptide that demonstrates many of the properties of apoA-I itself. Oral D-4F increases paraoxonase activity in monkeys and causes the formation of pre-s HDL. When added in nanomolar amounts to normal human plasma, D-4F reduces lipoprotein lipid hydroperoxide content, increases paraoxonase activity, and converts proinflammatory HDL to anti-inflammatory. Adding the combination of D-4F and pravastatin to mouse chow synergized to result in a significant increase in apoA-I levels, HDL-cholesterol, and paraoxonase activity in old apoE-null mice. We have shown that incubation of HDL from human patients or apoE deficient mouse with D-4F results in reduction of lipid hydroperoxides and an increase in paraoxonase activity in HDL

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anantharamaiah GM, Jones JL, Brouillette CG, Schmidt CF, Chung BH, Hughes TA, Bhown AS, Segrest P. Studies of synthetic peptide analogs of amphipathic helix I: Structure of peptide/DMPC complexes. J Biol Chem. 1985; 260: 10248–10255.

    CAS  PubMed  Google Scholar 

  • Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy ST, Fogelman M. Inflammatory/antiinflammatory properties of high-density lipoproteins distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably impacted by simvastatin treatment. Circulation. 2003; 108: 2751–2756.

    Article  CAS  PubMed  Google Scholar 

  • Barter PJ, Nicholls S, Rye K-A, Anantharamaiah GM, Navab M, Fogelman M. Antiinflammatory properties of HDL. Circ Res. 2004; 95: 764–772.

    Article  CAS  PubMed  Google Scholar 

  • Datta G, Epand RF, Epand RM, Chaddha M, Kirksey MA, Garber DW, Lund-Katz S, Phillips MC, Hama S, Navab M, Fogelman AM, Palgunachari MN, Segrest JP, Anantharamaiah M. Aromatic Residue Position on the Nonpolar Face of Class A Amphipathic Helical Peptides Determines Biological Activity. J Biol Chem. 2004; 279: 26509–26517.

    Article  CAS  PubMed  Google Scholar 

  • Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992 Nov 1; 89(21): 10316–20.

    Article  CAS  Google Scholar 

  • Epand RM, Epand RF, Sayer BG, Melacini G, Palgunachari MN, Segrest JP, Anantharamaiah M. An apolipoprotein AI mimetic peptide: membrane interactions and the role of cholesterol. Biochemistry. 2004; 43: 5073–5083.

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF, Sayer BG, Datta G, Chaddha M, Anantharamaiah M. Two homologous apolipoprotein AI mimetic peptides. Relationship between membrane interactions and biological activity. J Biol Chem. 2004; 279: 51404–51414.

    Article  CAS  PubMed  Google Scholar 

  • 19-Ekmekci OB, Donma O, Ekmekci H, Yildirim N, Uysal O, Sardongan E, Demrel H, Demir, T. Plasma paraoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients. Biol Trace Elem Res. 2006; 111: 41–52.

    Article  Google Scholar 

  • Fogelman M. When good cholesterol goes bad. Nature Medicine 2004; 10: 902–3.

    Article  CAS  PubMed  Google Scholar 

  • Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999; 340: 448–454.

    Article  CAS  PubMed  Google Scholar 

  • Kassai A, Ilyes L, Mirdamadi HZ, Seres I, Kalmar T, Audikovsky M, Paragh G. The effect of atorvastatin therapy on lecithin:cholesterol acyltransferase, cholesteryl ester transfer protein and the antioxidant paraoxonase. Clin Biochem. 2007; 40: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Hama-Levy S, Van Lenten BJ, Fonarow GC, Cardinez, CJ, Castellani LW, Brennan M-L, Lusis AJ, Fogelman M. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. J. Clin. Invest. 1997; 99: 2005–2019.

    Google Scholar 

  • Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD, Reddy ST, Sevanian A, Fonarow GC, Fogelman M. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res. 2000 Sep; 41(9): 1495–508.

    CAS  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, VanLenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman M. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993–1007.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Berliner JA, Subbanagounder G, Hama S, Lusis AJ, Castellani LW, Reddy S, Shih D, Shi W, Watson, AD, Van Lenten BJ, Vora D, Fogelman M. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 2001; 21: 481–488.

    Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Hough G, Wagner A, Nakamura K, Garber DW, Datta G, Segrest JP, Hama S, Fogelman M. Human apolipoprotein AI mimetic peptides for the treatment of atherosclerosis. Curr Opin Investig Drugs. 2003; 4: 1100–4. Review.

    CAS  PubMed  Google Scholar 

  • Navab M, Van Lenten BJ, Reddy ST, Fogelman M. High-density lipoprotein and the dynamics of atherosclerotic lesions. Circulation. 2001; 104: 2386–7.

    CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Wagner AC, Frank JS, Datta G, Garber D, Fogelman M. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004 Jun 29; 109(25): 3215–20.

    Article  CAS  Google Scholar 

  • Navab M, Hama S, Reddy ST, Fogelman M. Paraoxonase (PON1) in Health and Disease, Basic and Clinical Aspects. LG Costa and CE Furlong, editors, Kluwer Academic Publishers, Norwell, MA. 2002. PP. 125–136.

    Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Yu N, Ansell BJ, Datta G, Garber DW, Fogelman M. Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol. 2005; 25: 1325–31.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Hama S, Hough G, Reddy ST, Frank JS, Garber DW, Handattu S, Fogelman M. D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2005; 25: 1426–32.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman M. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993–1007.

    Article  CAS  PubMed  Google Scholar 

  • Navab M, Anantharamaiah G, Reddy TS, Van Lenten BJ, Ansell BJ, Fogelman M. Pro-atherogenic HDL: an evolving field. Nature Reviews Clinical Practice, Endocrinology and Metabolism. Sept 2006; Vol.2 No. 9 pp. 504–511.

    Google Scholar 

  • Navab M, Anantharamaiah G, Reddy ST, Fogelman M. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat Clin Pract Cardiovasc Med 2006; 3: 540–7.

    Article  CAS  PubMed  Google Scholar 

  • Ou J, Ou Z, Jones DW, Holzhaure S, Hatoum OA, Ackerman AW, Weihrauch DW, Gutterman DD, Guice K, Oldham KT, Hillery CA, Pritchard KA, Jr. L-D-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 2003; 107: 2337–2341.

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg O, Aviram M. S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity. Biochem Biophys Res Commun. 2006; 15; 351: 492–8.

    Article  CAS  Google Scholar 

  • Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, Maiorino M, Ursini F. LDL- is a lipid hydroperoxide-enriched circulating lipoprotein. J Lipid Res. 1997 Mar; 38(3): 419–28.

    CAS  Google Scholar 

  • Van Lenten BJ, Hama SY, deBeer FC, Stafforini DM, McIntyre TM, Prescott SM, La Du BN, Fogelman AM, Navab M. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. J. Clin. Invest. 1995; 96: 2758–2767.

    PubMed  Google Scholar 

  • Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Dec; 96(6): 2882–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Hough, G. (2008). D-4F Increases Paraoxonase 1 Activity in HDL. In: Mackness, B., Mackness, M., Aviram, M., Paragh, G. (eds) The Paraoxonases: Their Role in Disease Development and Xenobiotic Metabolism. Proteins And Cell Regulation, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6561-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6561-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6560-6

  • Online ISBN: 978-1-4020-6561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics