Skip to main content

Multiobjective Evolutionary Search of Difference Equations-based Models for Understanding Chaotic Systems

  • Chapter
Foundations of Generic Optimization

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 24))

  • 1822 Accesses

Abstract

In control engineering, it is well known that many physical processes exhibit a chaotic component. In point of fact, it is also assumed that conventional modeling procedures disregard it, as stochastic noise, beside nonlinear universal approximators (like neural networks, fuzzy rule-based or genetic programming-based models,) can capture the chaotic nature of the process. In this chapter we will show that this is not always true. Despite the nonlinear capabilities of the universal approximators, these methods optimize the one step prediction of the model. This is not the most adequate objective function for a chaotic model, because there may exist many different nonchaotic processes that have near zero prediction error for such an horizon. The learning process will surely converge to one of them. Unless we include in the objective function some terms that depend on the properties on the reconstructed attractor, we may end up with a non chaotic model. Therefore, we propose to follow a multiobjective approach to model chaotic processes, and we also detail how to apply either genetic algorithms or simulated annealing to obtain a difference equations-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Alvarez, A. Orfila and J. Tintore, DARWIN: An evolutionary programa for nonlinear modeling of chaotic time series. Computer Physics Communications, 136, pp. 334-349, 2000.

    Article  Google Scholar 

  2. E.K. Burke and J.D. Landa Silva. Improving the Performance of Trajectory-Based Multiobjective Optimisers by Using Relaxed Dominance. In: Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-Hwan Kim and Xin Yao, editors, Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), 1, pp. 203-207, Nanyang Technical University, Orchid Country Club, Singapore, November 2002.

    Google Scholar 

  3. H. Cao, L. Guo, Y. Chen and T. Guo, The Dynamic Evolutionary Modeling of HODEs for Time Series Prediction., Computers and Mathematics with Applications, 46, pp. 1397-1411, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y.S. Chang, K.S. Park and B.Y. Kim, Nonlinear model for ECG R-R interval variation using genetic programming approach. Future Generation Computer Systems, 21(7), pp. 1117-1123, 2005.

    Article  Google Scholar 

  5. I-F. Chung, C-J. Lin and C-T. Lin. A GA-based fuzzy adaptive learning control network. Fuzzy Sets and Systems, 112, pp. 65-84, 2000.

    Article  MathSciNet  Google Scholar 

  6. C.A. Coello. List of References on Evolutionary Multiobjective Optimization. http://www.lania.mx/ccoello/EMOO/EMOObib.html.

  7. C.A. Coello. An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends. In 1999 Congress on Evolutionary Computation, IEEE Service Center, 1, pp. 3-13, Washington, DC, 1999.

    Google Scholar 

  8. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing — a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7, pp. 34-47, 1998.

    Article  MATH  Google Scholar 

  9. K. Deb, Samir Agrawal, Amrit Pratab and T. Meyarivan, A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Marc Schoenauer, K. Deb, G ünter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo and Hans-Paul Schwefel, editors. Proceedings of the Parallel Problem Solving from Nature VI Conference. Paris, France. Springer. Lecture Notes in Computer Science No. 1917, p. 849-858, 2000.

    Google Scholar 

  10. K. Deb and Tushar Goel. Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. In: E. Zitzler, K. Deb, L. Thiele, C.A. Coello and David Corne, editors. First International Conference on Evolutionary Multi-Criterion Optimization. Springer-Verlag. Lecture Notes in Computer Science No. 1993, pp. 67-81, 2001.

    Google Scholar 

  11. K. Downing. Using evolutionary computational techniques in environmental modelling. Environmental Modelling and Software, 13, pp. 519-528, 1998.

    Article  Google Scholar 

  12. C. Evans, P.J. Fleming, D.C. Hill, J.P. Norton, I. Pratt, D. Rees and K. Rodriguez-Vazquez, Application of system identication techniques to aircraft gas turbine engines. Control Engineering Practice, 9, pp. 135-148, 2001.

    Article  Google Scholar 

  13. A.I. Fernandez, L. Sanchez and J. J. Navarro. Approximating the discrete space equation from chaotic noisy data (IPMU’2000). In Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems, Madrid, Spain, pp. 149-156, 2000.

    Google Scholar 

  14. D.B. Fogel and L.J. Fogel. Preliminary Experiments on Discriminating between Chaotic Signals and Noise using Evolutionary Programming. In: J.R. Koza, D.E. Goldberg, D.B. Fogel and R. L. Riolo, editors. Genetic Programming 96., MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  15. C.M. Fonseca and Peter J. Fleming. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms — Part I: A Unified Formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 28(1), pp. 26-37, 1998.

    Google Scholar 

  16. G.J. Gray, D.J. Murray-Smith, Y. Li, K.C. Sharman and T. Weinbrenner. Nonlinear model structure identification using genetic programming. Control Engineering Practice, 6, pp. 1341-1352, 1998.

    Article  Google Scholar 

  17. N.F. Guler, E.D. Ubeyli and I. Guler. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29, pp. 506-514, 2005.

    Article  Google Scholar 

  18. M. Hapke, Andrzej Jaszkiewicz and Roman Slowinski. Pareto Simulated Annealing for Fuzzy Multi-Objective Combinatorial Optimization. Journal of Heuristics, 6(3) pp. 329-345, August 2000.

    Article  MATH  Google Scholar 

  19. M. Hern ández-Guía, R. Mulet and S. Rodrguez-Prez, A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media. Physical Review E, 72 (3), 2005.

    Google Scholar 

  20. W. Jiang, Q. Guo-Dong and D. Bin. Observer-based robust adaptive variable universe fuzzy control for chaotic system. Chaos, Solutions and Fractals, 23, pp. 1013-1032, 2005.

    MathSciNet  MATH  Google Scholar 

  21. T. Jones. Crossover, macromutation and population-based search. In: 6th Internatonal Conference on Genetic Algorithms. San Francisco, July 15-19, Morgan Kaufmann, 1, pp. 73-80, 2005.

    Google Scholar 

  22. H. Kantz. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A, 185, pp. 77-87, 1994.

    Article  Google Scholar 

  23. D. Kim. Improving the fuzzy system performance by fuzzy system ensemble. Fuzzy Sets and Systems, 98, pp. 43-56, 1998.

    Article  Google Scholar 

  24. D. Kugiumtzis, B. Lillekjendliey and N. Christophersen. Chaotic time series. Part I: Estimation of some invariant properties in state space. Identification and Control, 4(15), pp. 205-224, 1995.

    Google Scholar 

  25. B. Lillekjendlie, D. Kugiumtzis and N. Christophersen. Chaotic time series part II: System identification and prediction. Identification and Control, 4(15), pp. 225-243, 1995.

    Google Scholar 

  26. A. Lopez, H. Lopez and L. Sanchez. Graph based GP applied to dynamical system modeling. In: Connectionist Models of Neurons, Learning Processes and Artificial Intelligence, 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001. Lecture Notes in Computer Science, 2084, pp. 725-732, 2001.

    Google Scholar 

  27. S. Luke. Two Fast Tree-Creation Algorithms for Genetic Programming. IEEE Transactions on Evolutionary Computation, 4(3), pp. 274-283, September 2000.

    Google Scholar 

  28. S. Luke and Liviu Panait. A Survey and Comparision of Tree Generation Algorithms. In: Lee Spector et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001). San Francisco, California, Morgan Kaufmann, pp. 81-88, 2001.

    Google Scholar 

  29. M.T. Rosenstein, J.J. Collins and C.J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65, pp. 117-134, June, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  30. M.W. Mak, K.W. Ku and Lu. On the improvement of the real time recurrent learning algorithm for recurrent neural networks. Neurocomputing, 24, pp. 13-36, 1999.

    Article  MATH  Google Scholar 

  31. M.A. Matos and Paulo Melo. Multiobjective Reconfiguration for Loss Reduction and Service Restorating Using Simulated Annealing. In: International Conference on Electric Power Engineering, Budapest 99. IEEE, pp. 213-218, 1999.

    Google Scholar 

  32. Y. Mei-Ying and W. Xiao-Dong. Chaotic time series prediction using least squares support vector machines. Chinese Physics, 13, pp. 454-458, 2004.

    Article  Google Scholar 

  33. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. Springer-Verlag, 1996.

    Google Scholar 

  34. S. Mukherjee, E. Osuna and F. Girosi. Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines. in: Proceedings of IEEE NNSP’97, Amelia Island, FL, USA, IEEE Service Center, pp. 24-26, September 1997.

    Google Scholar 

  35. D. Nam and Cheol Hoon Park. Multiobjective Simulated Annealing: A Comparative Study to Evolutionary Algorithms. International Journal of Fuzzy Systems, 2(2), pp. 87-97, 2000.

    Google Scholar 

  36. D. Nam and Cheol Hoon Park. Pareto-Based Cost Simulated Annealing for Multiobjective Op-timization. In: Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-Hwan Kim and Xin Yao, editors. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02). Nanyang Technical University, Orchid Country Club, Singapore, 2, pp. 522-526, November 2002.

    Google Scholar 

  37. R. Poli and Nicholas F. McPhee. Exact GP Schema Theory for Headless Chicken Crossover and Subtree Mutation. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001 COEX, World Trade Center, 159 Samseong-dong, Gangnamgu, Seoul, Korea, IEEE Press, pp. 1062-1069, 2001.

    Google Scholar 

  38. P. Potocnik and I. Grabec. Nonlinear model predictive control of a cutting process. Neuro-computing, 43, pp. 107-126, 2002.

    MATH  Google Scholar 

  39. K. Rodríguez-V ázquez, C.M. Fonseca and P.J. Fleming. Identifying the Structure of NonLinear Dynamic Systems Using Multiobjective Genetic Programming. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 34(4), pp. 531-545, July 2004.

    Google Scholar 

  40. J.J. Rowland. Model selection methodology in supervised learning with evolutionary computation. BioSystems, 72, pp. 187-196, 2003.

    Article  Google Scholar 

  41. A.E. Ruano, P.J. Fleming, C. Teixeira, K. Rodriguez-Vazquez and C.M. Fonseca. Nonlinear identification of aircraft gas-turbine dynamics. Neurocomputing, 55, pp. 551-579, 2003.

    Article  Google Scholar 

  42. L. Sanchez, I. Couso and J.A. Corrales. Combining GP operators with SA search to evolve Fuzzy Rule based classifiers. Information Sciences, 1-5, pp. 175-192, 2001.

    Article  Google Scholar 

  43. R.S. Sexton and J.N.D. Gupta. Comparative evaluation of genetic algorithm and backpropagation for training neural networks. Information Sciences, 129, pp. 45-59, 2000.

    Article  MATH  Google Scholar 

  44. T. Shin and I. Han. Optimal signal multi-resolution by genetic algorithms to support artificial neural networks for exchange-rate forecasting. Expert Systems with Applications, 18, pp. 257-269, 2000.

    Article  Google Scholar 

  45. Kevin I. Smith, Richard M. Everson and Jonathan E. Fieldsend. Dominance Measures for Multi-Objective Simulated Annealing. In: 2004 Congress on Evolutionary Computation (CEC’2004). Portland, Oregon, USA. IEEE Service Center, 1, pp. 23-30, June, 2004.

    Google Scholar 

  46. J.C. Sprott. Chaos and Time-Series Analysis. Oxford University Press, 2003.

    Google Scholar 

  47. Z. Wei, W. Zhiming and Y. Genke. Genetic programming-based chaotic time series modeling. Journal of Zhejiang University SCIENCE, 5(11), pp. 1432-1439, 2004.

    Article  Google Scholar 

  48. A. Wolf, J.B. Switf, H.L. Swinney and J. A. Vastano. Determining Lyapunov Exponents from a Time Series. Physica D, 16, pp. 285-317, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  49. A.M. Woodward, R.J. Gilbert and D. B. Kell. Genetic programming as an analytical tool for non-linear dielectric spectroscopy. Bioelectrochemistry and Bioenergetics, 48, pp. 389-396, 1999.

    Article  Google Scholar 

  50. E. Zitzler, K. Deb and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput., 8(2), pp. 173-195, 2000.

    Article  Google Scholar 

  51. E. Zitzler, M. Laumanns, L. Thiele, C.M. Fonseca and V. Grunert da Fonseca, Why Quality Assessment of Multiobjective Optimizers Is Difficult. In: W.B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli and K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller, E. Burke and N. Jonoska, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002). San Francisco, California, pp. 666-673, July 2002.

    Google Scholar 

  52. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca and V. Grunert da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2), pp. 117-132, April 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Sánchez, L., Villar, J.R. (2008). Multiobjective Evolutionary Search of Difference Equations-based Models for Understanding Chaotic Systems. In: Lowen, R., Verschoren, A. (eds) Foundations of Generic Optimization. Mathematical Modelling: Theory and Applications, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6668-9_4

Download citation

Publish with us

Policies and ethics