Skip to main content

Mitochondrial Medicine

  • Chapter
Mitochondrial Medicine

Mitochondrial medicine represents a complex of clinical, biochemical, pathological and genetic information crucial in diagnosis and treatment. An outline of the development of mitochondrial medicine was for the first time published by Luft in 1994 [22]. Several organizations are focused on mitochondrial medicine, from experimental and clinical research (Mitochondrial Research Society – MRS) to patients application (Mitochondrial Medicine Society –MMS), education and family oriented (United Mitochondrial Diseases Foundation – UMDF), and others. Knowledge concerning mitochondrial DNA (mtDNA) changes in several mitochondrial diseases were published recently [10].

This book presents mitochondrial medicine from the viewpoint of several preclinical studies on chronobiology, aging, Alzheimer’s disease, Huntington’s disease, diabetes, supplementary therapy with CoQ10, carnitine, alpha-lipoic acid, n-3, n-6 PUFA, and it provides information on clinical application of mitochondrial medicine in cardiology, diabetology, nephrology, immunology, and andrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev G, Smith MA, Torre JC, Perry G (2004) Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease. Mitochondrion 4:649–663

    Article  PubMed  CAS  Google Scholar 

  2. Andreson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Derouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  Google Scholar 

  3. Beal MF (2005) Mitochondria take center stage in ageing and neurodegeneration. Ann Neurol 58(4):495–505

    Article  PubMed  CAS  Google Scholar 

  4. Bota DA, Davies KJA (2001) Protein degradation in mitochondria: implications for oxidative stress, ageing and diseases: a novel etiological classification of mitochondrial proteolytic disorders (review). Mitochondrion 1:33–49

    Article  PubMed  CAS  Google Scholar 

  5. Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29(3):531–546

    Article  PubMed  CAS  Google Scholar 

  6. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163

    Article  PubMed  CAS  Google Scholar 

  7. Cooper JM, Schapira AH (2003) Friedrich’s ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy. Biofactors 18:163–171

    Article  PubMed  CAS  Google Scholar 

  8. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  9. DiMauro S., DiMauro PM (1973) Muscle carnitine palmitoyl-trransferase deficiency and myoglobinuria. Science 182:929–931

    Article  PubMed  CAS  Google Scholar 

  10. DiMauro, Hirano M., Schon EA (2006). Mitochondrial Medicine. Informa Healthcare 2006, pp 348

    Google Scholar 

  11. Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179:899–902

    Article  PubMed  CAS  Google Scholar 

  12. Epstein CJ (1995) Down’s syndrome (trisomy 21). In: Scriver CR, Beaudet AL, Sly WS et al. (eds) The Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill, New York

    Google Scholar 

  13. Fraser PE, Yang DS, Yu G, Lovesque L, Nishimura M, Arawaka S, Serpell LC, Rogaeva E, Hyslop PG (2000) Presenilin structure, function and role in Alzheimer’s disease. Biochim Biophys Acta 1502:1–15

    PubMed  CAS  Google Scholar 

  14. Gardian G, Vecsei L (2004) Huntington’s disease: pathomechanism and therapeutic perspectives. J Neural Transm 111:1485–1494

    Article  PubMed  CAS  Google Scholar 

  15. Haas RH, Nasirian F, Nakano K et al. (1989) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    Article  Google Scholar 

  16. Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T (1991) Age-associated accumulation of 8-hydroxydeoxyquanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179(2):1023–1029

    Article  PubMed  CAS  Google Scholar 

  17. Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugyiama S, Ozawa T (1996) Aged-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226(2):369–377

    Article  PubMed  CAS  Google Scholar 

  18. Jope R, Blass JP (1975) A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver. Biochem J 150:397–403

    PubMed  CAS  Google Scholar 

  19. Kašparová S, Sumbalová Z, Bystricky P, Kucharská J, Liptaj T, Mlynárik V, Gvozdjáková A (2006) Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington’s disease. Neurochem Int 48:93–99

    Article  PubMed  CAS  Google Scholar 

  20. Kim SH, Fountoulakis M, Dierssen M, Lubec G (2001) Decreased protein levels of complex I 30-kDa subunit in fetal Down’s syndrome brains. J Neural Transm Suppl 61:109–116

    Google Scholar 

  21. Kunz WS, Kuznetsov AV, Clark JF, Tracey I, Elger CE (1999) Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J Neurochem 72:1580–1585

    Article  PubMed  CAS  Google Scholar 

  22. Luft R (1994) The development of mitochondrial medicine. Proc Natl Acad Sci USA 91:9831–9838

    Article  Google Scholar 

  23. Luft R, Landau BR (1995) Mitochondrial medicine. J Intern Med 238:405–421

    Article  PubMed  CAS  Google Scholar 

  24. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962) A case of severe hypermetabolism of nonthyroid origin with the defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study. J Clin Invest 41:1776–1804

    Article  PubMed  CAS  Google Scholar 

  25. Miquel J, Fleming JE (1984) A two-step hypothesis on the mechanism of in vitro cell ageing: cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp Gerontol 19:31–36

    Article  PubMed  CAS  Google Scholar 

  26. Muchová J, Šustrová M, Garaiová I, Liptáková A, Blažíček P, Kvasnička P, Pueschel S, Duračková Z (2001) Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down’s syndrome patients. Free Radic Biol Med 31(4):499–508

    Article  PubMed  Google Scholar 

  27. Muller-Hocker J (1989) Cytochrome – c –oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol 134(5):1167–1173

    PubMed  CAS  Google Scholar 

  28. Naviaux RK (2004) Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 4:351–361

    Article  PubMed  CAS  Google Scholar 

  29. Pereira C, Gazila MM, Oliviera CR (2001) β-amyloid protein impairs mitochondrial function. In: Ebadi M, Nearwah J, Chopra RK (eds) Mitochondrial Ubiquinone, Vol. 2. pp 281–300

    Google Scholar 

  30. Reddy PH (2006) Mitochondrial oxidative damage in ageing and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics (review article). J Biomed Biotechnol 31372:1–13

    Article  CAS  Google Scholar 

  31. Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Research. Brain Res Rev 49(3):618–632

    Article  PubMed  CAS  Google Scholar 

  32. Reed JC (2002) Apoptosis-based therapies. Nat Rev/Drug Discov 1:111–121

    Article  CAS  Google Scholar 

  33. Remacle J, Lambert D, Raes M, Pigeolet E, Michiels C, Toussaint D (1992) Importance of various antioxidant enzymes for cell stability. Biochem J 286:41–46

    PubMed  CAS  Google Scholar 

  34. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  35. Shults CW (2004) Mitochondrial dysfunction and possible treatments in Parkinson’s disease– a review. Mitochondrion 4:641–648

    Article  PubMed  CAS  Google Scholar 

  36. Shults CW, Oakes D, Kieburtz K et al. (2002) Effects of coenzyme Q10 in early Parkinson’s disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  37. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2002) Oxidative stress in Alzheimer’s disease. (Review). Biochim Biophys Acta 1502:139–144

    Google Scholar 

  38. Spiro AJ, Moore CL, Prineas JW, Strasberg PM, Rapin I (1970) A cytochrome-related inherited disorder of the nervous system and muscle. Arch Neurol 23:103–112

    PubMed  CAS  Google Scholar 

  39. Van Gurp M, Festjens N, Van Loo G, Saelens S, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497

    Article  PubMed  CAS  Google Scholar 

  40. Vielhalber S, Kaufmann J, Kanowski M et al. (2001) Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp Neurol 172:377–382

    Article  CAS  Google Scholar 

  41. Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10(Suppl):S58–S62

    Article  PubMed  CAS  Google Scholar 

  42. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nicoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 24:21427–21430

    Google Scholar 

  43. Zhang C, Linnane AW, Nagley P (1993) Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195(2):1104–1110

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Gvozdjáková, A. (2008). Mitochondrial Medicine. In: Gvozdjáková, A. (eds) Mitochondrial Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6714-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6714-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6713-6

  • Online ISBN: 978-1-4020-6714-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics