Skip to main content

Age-Dependent Changes in Skeletal MuscleRegeneration

  • Chapter
Skeletal Muscle Repair and Regeneration

Part of the book series: Advances in Muscle Research ((ADMR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrass CK, Adcox MJ, Raugi GJ (1995) Aging-associated changes in renal extracellular matrix. Am J Pathol 146:742–752

    PubMed  CAS  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft GS, Mills SJ, Ashworth JJ (2002) Ageing and wound healing. Biogerontology 3:337–345

    Article  PubMed  CAS  Google Scholar 

  • Balagopal P, Schimke JC, Ades P, Adey D, Nair KS (2001) Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab 280:E203–E208

    PubMed  CAS  Google Scholar 

  • Barani AE, Durieux AC, Sabido O, Freyssenet D (2003) Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. J Appl Physiol 95:2089–2098

    PubMed  Google Scholar 

  • Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA (2004) Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 3:353–361

    Article  PubMed  CAS  Google Scholar 

  • Bekaert S, Derradji H, Baatout S (2004) Telomere biology in mammalian germ cells and during development. Dev Biol 274:15–30

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    Google Scholar 

  • Blaivas M, Carlson BM (1991) Muscle fiber branching–difference between grafts in old and young rats. Mech Ageing Dev 60:43–53

    Article  PubMed  CAS  Google Scholar 

  • Bockhold KJ, Rosenblatt JD, Partridge TA (1998) Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers. Muscle Nerve 21:173–183

    Article  PubMed  CAS  Google Scholar 

  • Bortoli S, Renault V, Eveno E, Auffray C, Butler-Browne G, Pietu G (2003) Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene 321:145–154

    Article  PubMed  CAS  Google Scholar 

  • Brack AS, Bildsoe H, Hughes SM (2005) Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118:4813–4821

    Article  PubMed  CAS  Google Scholar 

  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell, in press.

    Google Scholar 

  • Brack AS, Conboy MJ, Lee M, Roy S, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters myogenic stem cell fate and increases fibrosis. Science 317:807–810.

    Article  PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1991) Maximum and sustained power of extensor digitorum longus muscles from young, adult, and old mice. J Gerontol 46:B28–B33

    PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1996) The magnitude of the initial injury induced by stretches of maximally activated muscle fibres of mice and rats increases in old age. J Physiol 497 (Pt 2):573–580

    PubMed  CAS  Google Scholar 

  • Campisi J (2001) From cells to organisms:can we learn about aging from cells in culture? Exp Gerontol 36:607–618

    Article  PubMed  CAS  Google Scholar 

  • Cannon JG (1998) Intrinsic and extrinsic factors in muscle aging. Ann N Y Acad Sci 854:72–77

    Google Scholar 

  • Carlson BM, Dedkov EI, Borisov AB, Faulkner JA (2001) Skeletal muscle regeneration in very old rats. J Gerontol A Biol Sci Med Sci 56:B224–B233

    PubMed  CAS  Google Scholar 

  • Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats:age of host determines recovery. Am J Physiol 256:C1262–C1266

    PubMed  CAS  Google Scholar 

  • Charge SB, Brack AS, Hughes SM (2002) Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy. Am J Physiol Cell Physiol 283:C1228–C1241

    PubMed  CAS  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84:209–238

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Quinn LS (1992) Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract. J Cell Physiol 153:563–574

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zajac JD, MacLean HE (2005) Androgen regulation of satellite cell function. J Endocrinol 186:21–31

    Article  PubMed  CAS  Google Scholar 

  • Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. JGerontol 47:B71–B76

    CAS  Google Scholar 

  • Collins CA, Partridge TA (2005) Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle 4:1338–1341

    PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410

    PubMed  CAS  Google Scholar 

  • Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63:1816–1821

    PubMed  CAS  Google Scholar 

  • Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

    Article  PubMed  CAS  Google Scholar 

  • Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2003) MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell Tissue Res 311:401–416

    PubMed  CAS  Google Scholar 

  • Doumit ME, Cook DR, Merkel RA (1996) Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 137:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Dow DE, Dennis RG, Faulkner JA (2005) Electrical stimulation attenuates denervation and age-related atrophy in extensor digitorum longus muscles of old rats. J. Gerontol. A Biol Sci Med Sci 60:416–424

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  • Everitt AV, Shorey CD, Ficarra MA (1985) Skeletal muscle aging in the hind limb of the old male Wistar rat:inhibitory effect of hypophysectomy and food restriction. Arch Gerontol Geriatr 4:101–115

    Article  PubMed  CAS  Google Scholar 

  • Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263:3029–3034

    CAS  Google Scholar 

  • Florini JR, Magri KA (1989) Effects of growth factors on myogenic differentiation. Am J Physiol 256:C701–C711

    PubMed  CAS  Google Scholar 

  • Froesch ER, Zapf J (1985) Insulin-like growth factors and insulin: comparative aspects. Diabetologia 28:485–493

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Silber J, Loeb LA, Martin GM (1984) Delayed and reduced cell replication and diminishing levels of DNA polymerase-alpha in regenerating liver of aging mice. J Cell Physiol 118:225–232

    Article  PubMed  CAS  Google Scholar 

  • Fujino H, Kohzuki H, Takeda I, Kiyooka T, Miyasaka T, Mohri S, Shimizu J, Kajiya F (2005) Regression of capillary network in atrophied soleus muscle induced by hindlimb unweighting. J Appl Physiol 98:1407–1413

    Article  PubMed  Google Scholar 

  • Gagliano N, Arosio B, Grizzi F, Masson S, Tagliabue J, Dioguardi N, Vergani C, Annoni G (2002) Reduced collagenolytic activity of matrix metalloproteinases and development of liver fibrosis in the aging rat. Mech Ageing Dev 123:413–425

    Article  PubMed  CAS  Google Scholar 

  • Gibson MC, Schultz E (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6:574–580

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G, Fernandes K, Williams PE, Wells DJ (1994) Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscul. Disord 4:183–191

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Hirayama R, Takemura K, Nihei Z, Ichikawa W, Takagi Y, Mishima Y, Utsuyama M, Hirokawa K (1993) Differential effect of host microenvironment and systemic humoral factors on the implantation and the growth rate of metastatic tumor in parabiotic mice constructed between young and old mice. Mech Ageing Dev 71:213–221

    Article  PubMed  CAS  Google Scholar 

  • Jejurikar SS, Henkelman EA, Cederna PS, Marcelo CL, Urbanchek MG, Kuzon WM, Jr (2006) Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Exp Gerontol. 41:828–836

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Ansved T (1995) Effects of ageing on the motor unit. Prog Neurobiol 45:397–458

    Article  PubMed  CAS  Google Scholar 

  • Lees SJ, Rathbone CR, Booth FW (2006) Age-associated decrease in muscle precursor cell differentiation. Am J Physiol Cell Physiol 290:C609–C615.

    Article  PubMed  CAS  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No:11–16.

    PubMed  CAS  Google Scholar 

  • Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    Article  PubMed  CAS  Google Scholar 

  • Li X, Larsson L (1996) Maximum shortening velocity and myosin isoforms in single muscle fibers from young and old rats. Am J Physiol 270:C352–C360

    PubMed  CAS  Google Scholar 

  • Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019

    PubMed  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63:337–340

    Article  PubMed  CAS  Google Scholar 

  • Martin K, Potten CS, Roberts SA, Kirkwood TB (1998) Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. J Cell Sci 111 (Pt 16):2297–2303

    Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • McGeachie JK, Grounds MD (1995) Retarded myogenic cell replication in regenerating skeletal muscles of old mice: an autoradiographic study in young and old BALBc and SJL/J mice. Cell Tissue Res 280:277–282

    Article  PubMed  CAS  Google Scholar 

  • Mezzogiorno A, Coletta M, Zani BM, Cossu G, Molinaro M (1993) Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mech Ageing Dev 70:35–44

    Article  PubMed  CAS  Google Scholar 

  • Mouly V, Aamiri A, Bigot A, Cooper RN, Di DS, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Perie S, Renault V, Silva-Barbosa SD, Butler-Browne GS (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184:3–15

    Article  PubMed  CAS  Google Scholar 

  • Pampusch MS, Hembree JR, Hathaway MR, Dayton WR (1990) Effect of transforming growth factor beta on proliferation of L6 and embryonic porcine myogenic cells. J Cell Physiol 143:524–528

    Article  PubMed  CAS  Google Scholar 

  • Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand. J Med Sci Sports 5:129–142

    Article  PubMed  CAS  Google Scholar 

  • Quinn LS, Ong LD, Roeder RA (1990) Paracrine control of myoblast proliferation and differentiation by fibroblasts. Dev Biol 140:8–19

    Article  PubMed  CAS  Google Scholar 

  • Reeves I, Abribat T, Laramee P, Jasmin G, Brazeau P (2000) Age-related serum levels of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction. Growth Horm IGF Res 10:78–84

    Article  PubMed  CAS  Google Scholar 

  • Robertson TA, Maley MA, Grounds MD, Papadimitriou JM (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207:321–331

    Article  PubMed  CAS  Google Scholar 

  • Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP (2006) Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol 100:178–185

    CAS  Google Scholar 

  • Sadeh M (1988) Effects of aging on skeletal muscle regeneration. J Neurol Sci 87:67–74

    Article  PubMed  CAS  Google Scholar 

  • Sajko S, Kubinova L, Cvetko E, Kreft M, Wernig A, Erzen I (2004) Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. J Histochem Cytochem 52:179–185

    PubMed  CAS  Google Scholar 

  • Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ, Miele L, Cardoso AA, Classon M, Carlesso N (2005) Notch1 modulates timing of G1-S pogression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 202:157–168

    Article  PubMed  CAS  Google Scholar 

  • Sayer AA, Syddall H.E, Martin HJ, Dennison EM, Roberts HC, Cooper C (2006) Is grip strength associated with health-related quality of life? Findings from the Hertfordshire Cohort Study. Age Ageing 35:409–415

    Article  PubMed  Google Scholar 

  • Schultz E, Lipton BH (1982) Skeletal muscle satellite cells: changes in proliferassstion potential as a function of age. Mech Ageing Dev 20:377–383

    Article  PubMed  CAS  Google Scholar 

  • Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66.

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko AV, Gubrii IB, Andrianova LF, Macsijuk TV, Butenko GM (1986) Functional rearrangement of lymphohemopoietic system in heterochronically parabiosed mice. Mech. Ageing Dev. 36:41–56.

    Article  PubMed  CAS  Google Scholar 

  • Snow LM, McLoon LK, Thompson LV (2005) Adult and developmental myosin heavy chain isoforms in soleus muscle of aging Fischer Brown Norway rat. Anat Rec A Discov Mol Cell Evol Biol 286:866–873

    PubMed  Google Scholar 

  • Snow MH (1977) The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res 185:399–408

    Article  PubMed  CAS  Google Scholar 

  • Snyder PJ (2001) Effects of age on testicular function and consequences of testosterone treatment. JClin Endocrinol Metab 86:2369–2372

    Article  CAS  Google Scholar 

  • Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA, Peterson CA (2002) Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123:649–661

    Article  PubMed  CAS  Google Scholar 

  • Thompson SH, Boxhorn LK, Kong WY, Allen RE (1989) Trenbolone alters the responsiveness of skeletal muscle satellite cells to fibroblast growth factor and insulin-like growth factor I. Endocrinology 124:2110–2117

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am. J. Physiol Regul. Integr. Comp Physiol 288:R345–R353

    PubMed  CAS  Google Scholar 

  • Vandenburgh HH, Sheff MF, Zacks SI (1984) Soluble age-related factors from skeletal muscle which influence muscle development. Exp Cell Res 153:389–401

    Article  PubMed  CAS  Google Scholar 

  • Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE, Jr, MacDougald OA, Peterson CA (2005) Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell 16:2039–2048

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    PubMed  CAS  Google Scholar 

  • Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brack, A.S., Rando, T.A. (2008). Age-Dependent Changes in Skeletal MuscleRegeneration. In: Skeletal Muscle Repair and Regeneration. Advances in Muscle Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6768-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6768-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6767-9

  • Online ISBN: 978-1-4020-6768-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics