Skip to main content

In the present chapter, fatigue properties of materials are described in terms of the fatigue limit, fatigue curves (S-N curves) and a fatigue diagram. The properties are restricted to results of constant-amplitude (CA) tests on unnotched specimens (K t = 1.0) It is generally thought that the results of these tests reflect the basic fatigue behavior of a material. Mechanical properties of a material should include fatigue properties, but quite often reporting of fatigue properties is restricted to the fatigue limit on unnotched specimens obtained in rotating beam experiments (S m = 0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schijve, J., Significance of fatigue cracks in micro-range and macro-range. Fatigue Crack Propagation, ASTM-STP 415 (1967), pp. 415–459.

    Google Scholar 

  2. Grover, H.J., Bishop, S.M. and Jackson, L.R., Fatigue strength of aircraft materials. Axial load fatigue tests on unnotched sheet specimens of 24S-T3, 75S-T6 aluminum alloys and of SAE 4130 steel. NACA TN 2324 (1951).

    Google Scholar 

  3. Grover, H.J., Fatigue of Aircraft Structures. U.S. Government Printing Office (1966).

    Google Scholar 

  4. Forrest, P.G., Fatigue of Metals. Pergamon Press, Oxford (1962).

    Google Scholar 

  5. Schütz, W., View points of material selection for fatigue loaded structures. Laboratorium für Betriebsfestigkeit LBF, Darmstadt, Bericht Nr. TB-80 (1968) [in German].

    Google Scholar 

  6. Buch, A., Evaluation of size effects in fatigue tests on unnotched specimens and components. Arch. Eisenhüttenwesen, Vol. 43 (1972), pp. 885–900 [in German].

    Google Scholar 

  7. Kloos, K.H., Buch, A. and Zankov, D., Pure geometrical size effect in fatigue tests with constant stress amplitude and in programme tests. Zeitschr. Werkstoftechn., Vol. 12 (1981), pp. 40–50.

    Google Scholar 

  8. Smith, J.O., Effect of range of stress on fatigue strength. University of Illinois, Engrg. Expt. Station Bulletin 334 (1942).

    Google Scholar 

  9. Leger, J., Fatigue life testing of crane drive shafts under crane-typical torsional and rotary bending loads. Schenck Hydropuls Mag., Issue 1/89 (1989), pp. 8–11.

    Google Scholar 

  10. Gough, H.J. and Pollard, H.V., The strength of metals under combined alternating stresses. Proc. Inst. Mech. Engrs, Vol. 131 (1935), pp. 3–103.

    Google Scholar 

  11. Gough, H.J. and Pollard, H.V., Some experiments of the resistance of metals to fatigue under combined stresses. Min. of Supply, Aero Res. Council, RSM 2522, Part I (1951).

    Google Scholar 

  12. Ballard, P., Dang Van, K. Deperrois, A. and Papadopoulos, Y.V., High cycle fatigue and a finite element analysis. Fatigue Fracture Engrg. Mater. Struct., Vol. 18 (1995), pp. 397–411.

    Google Scholar 

  13. Socie, D. and Marquis, G.B., Multiaxial Fatigue, John Wiley & Sons (1999).

    Google Scholar 

  14. Coffin Jr., L.F., Low cycle fatigue – A review. Appl. Mater. Res., Vol. 1, No. 3 (1962), p. 129.

    Google Scholar 

  15. Manson, S.S. and Hirschberg, M.H., Fatigue behavior in strain cycling in the low- and intermediate-cycle range. In Fatigue, An Interdisciplinary Approach, J.J. Burke, N.L. Reed and V. Weiss (Eds.). Syracuse University Press (1964), p. 133.

    Google Scholar 

  16. Coffin Jr., L.F. and Tavernelli, J.F., The cyclic straining and fatigue of metals. Trans. Metall. Soc. AIME, Vol. 215 (1959), pp. 794–807.

    Google Scholar 

  17. Brose, W.R., Fatigue life predictions for a notched plate with analysis of mean stress and overstrain effects. In Fatigue under Complex Loading, R.M. Wetzel (Ed.). SAE Advanced in Engineering, Vol. 6 (1977), pp. 117–135.

    Google Scholar 

  18. Smith, R.W., Hirschberg, M.H. and Manson, S.S., Fatigue behavior of materials under stain cycling in low and intermediate life range. NASA TN D1574 (1963).

    Google Scholar 

  19. Graham, J.F., Fatigue Design Handbook. Soc. of Automotive Engineers (1968).

    Google Scholar 

General references

  1. Sonsino, C.M., Course of S-N-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int. J. Fatigue, Vol. 29 (2007), pp. 2246–2258.

    Article  Google Scholar 

  2. Murakami, Y., Metal fatigue: Effects of small defects and nonmetallic inclusions. Elsevier (2002).

    Google Scholar 

  3. Stanzl-Tschegg, S.E. and Mayer, H.R., Fatigue in the very high cycle regime. Conference Proceedings. Institute of Meteorology and Physics, Vienna (2001).

    Google Scholar 

  4. Macha, E., Bedkowski, W. And Lagoda, T., Multiaxial Fatigue and Fracture. ESIS Publication 25, Elsevier (1999).

    Book  Google Scholar 

  5. Suresh, S., Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1998).

    Google Scholar 

  6. Rice, C.R. (Ed.), SAE Fatigue Design Handbook, 3rd edn. AE-22, Society of Automotive Engineers, Warrendale (1997).

    Google Scholar 

  7. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, 4th edn. John Wiley & Sons, New York (1996).

    Google Scholar 

  8. Shiozawa, K. and Sakai, T. (Eds.), Data Book on Fatigue Strength of Metallic Materials. 3 Volumes. Elsevier, Amsterdam (1996).

    Google Scholar 

  9. Fatigue and Fracture. American Society for Materials, Handbook Vol. 19, ASM (1996).

    Google Scholar 

  10. Fatigue Data Book: Light Structural Alloys. ASM International (1995).

    Google Scholar 

  11. Dowling, N.E., Mechanical Behavior of Materials. Engineering Methods for Deformation, Fracture, and Fatigue, 3rd edn. Prentice-Hall (2006).

    Google Scholar 

  12. McDowell, D.L. and Rod, E. (Eds.), Advances in Multiaxial Fatigue. ASTM STP 1191 (1993).

    Google Scholar 

  13. Blom, A.F. and Beevers, C.J. (Eds.), Theoretical Concepts and Numerical Analysis of Fatigue. Proc. Conf. May 1992, Birmingham. EMAS (1992).

    Google Scholar 

  14. Klesnil, M. and Lukás, P., Fatigue of Metallic Materials, 2nd edn. Elsevier, Amsterdam (1992).

    Google Scholar 

  15. Brown, M.W. and Miller, K.J. (Eds), Biaxial and Multiaxial Fatigue. EGF Publication 3. Mechanical Engineering Publications (1989).

    Google Scholar 

  16. Boller, Chr. and Seeger, T., Materials Data for Cyclic Loading. Materials Science Monographs, 42, 5 Volumes. Elsevier, Amsterdam (1987).

    Google Scholar 

  17. Boyer, H.E., Atlas of Fatigue Curves. Amer. Soc. for Metals (1986).

    Google Scholar 

  18. Miller, K.J. and Brown, M.W. (Eds.), Multiaxial fatigue. ASTM STP 853 (1985).

    Google Scholar 

  19. Frost, N.E., Marsh, K.J. and Pook, L.P., Metal Fatigue. Clarendon, Oxford (1974).

    Google Scholar 

  20. Stephens, R.I., Fatemi, A., Stephens, R.R. and Fuchs, H.O., Metal Fatigue in Engineering, 2nd edn. John Willey & Sons (2000).

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Fatigue Properties. In: Schijve, J. (eds) Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6808-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6808-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6807-2

  • Online ISBN: 978-1-4020-6808-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics