Skip to main content

Dementia and Alzheimer’s disease afflict approximately 5% of the population over 65, and > 20% of the population > 80. These disorders are likely to increase substantially given the change in the demographic pattern. The cost for the society and suffering for the families are tremendous. Stress and disorders with increased production of steroids seem to induce cognitive impairment. Likewise drugs that induce high activity in the Gamma Amino Butyric Acid-A (GABAA) receptor seem to be involved in dementia development and cognitive impairment. This review will concentrate on arguments indicating a link between stress disordersneuroactive steroids active on the GABAA receptor (GABA-steroids) and permanent cognitive impairment. Chronic long-term exposure by all GABAA receptor agonists, e.g., benzodiazepines, barbiturates and alcohol, give permanent memory and learning impairment. The sex-steroid medroxyprogesterone, given as postmenopausal hormone therapy, double the dementia frequency in 5 years. The neuroactive steroid allopregnanolone inhibits learning in rat studies. Chronically high cortisol and GABA-steroid levels give irreversible cognitive damages. During stress the production of both cortisol and GABA-steroids increase in parallel. GABA-steroid production occurs in the adrenals and are produced and regulated as cortisol. Patients with advanced Alzheimer’s disease have similar cortisol and GABA-steroid response to adrenal stimulation as chronically stressed animals. Patients with mild Alzheimer’s disease have a high and non-suppressible production of cortisol and GABA-steroids. Cortisol metabolites increase the effect of allopregnanolone on the GABAA receptor. Chronic stress and “burn-out syndrome” gives permanent cognitive damages and are frequent in the patient history of patients with Alzheimer’s disease. An impaired cholinergic system is involved in Alzheimer’s disease. Allopregnanolone hamper memory-related cholinergic action. GABAA receptor subunit alpha5 is mainly localized in the hippocampus, i.e., in the region for learning and memory. Blockade of the GABAA receptor subunit alpha5 increased learning and memory. An allopregnanolone antagonist is shown to antagonize the learning and memory disruption of allopregnanolone both in vitro in receptor pharmacological studies and in vivo in studies using the Morris Water Maze model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the women’s health initiative memory study: a randomized controlled trial. JAMA 2003; 289:2651–2662.

    Article  PubMed  CAS  Google Scholar 

  2. Lupien SJ, Fiocco A, Wan N, et al. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005; 30:225–242.

    Article  PubMed  CAS  Google Scholar 

  3. Sandström A, Rhodin IN, Lundberg M, et al. Impaired cognitive performance in patients with chronic burnout syndrome. Biol Psychol 2005; 69:271–279.

    Article  PubMed  Google Scholar 

  4. Meyerson B. Relationship between the anesthetic and gestagenic action and estrus behaviour-inducing activity of different progestins. Endocrinology 1967; 81:369–374.

    Article  PubMed  CAS  Google Scholar 

  5. Henderson VW, Paganini Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994; 51:896–900.

    PubMed  CAS  Google Scholar 

  6. Shumaker SA, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 2004; 291:2947–2958.

    Article  PubMed  CAS  Google Scholar 

  7. Johansson IM, Birzniece V, Lindblad C, et al. Allopregnanolone inhibits learning in the Morris water maze. Brain Res 2002; 934:125–131.

    Article  PubMed  CAS  Google Scholar 

  8. Barker MJ, Greenwood KM, Jackson M, et al. Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis. Archives of Clinical Neuropsychology 2004; 19(3):437–454.

    Article  PubMed  Google Scholar 

  9. Mohammed AK, Wahlström G, Tiger G, et al. Impaired performance of rats in the Morris swim-maize test late in abstinence following long-term sodium barbital treatment. Drug Alcohol Depend 1987; 20(3):203–212.

    Article  PubMed  CAS  Google Scholar 

  10. Saunders PA, Copeland JR, Dewey ME, et al. Heavy drinking as a risk factor for depression and dementia in elderly men. Findings from the Liverpool longitudinal community study. Br J Psychiatry 1991; 159:213–216.

    Article  PubMed  CAS  Google Scholar 

  11. Maglóczki E, Pákáski M, Janka Z, et al. Risk factors of cognitive decline in residential care in Hungary. Int J Geriatr Psychiatry 2007; June 11 [epub ahead of print].

    Google Scholar 

  12. Solfrizzi V, D’Introno A, Colacicco AM, et al. Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology 2007; 68(21):1790–1799.

    Article  PubMed  CAS  Google Scholar 

  13. Majewska MD, Harrison NL, Schwartz RD, et al. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232:1004–1007.

    Article  PubMed  CAS  Google Scholar 

  14. Wang MD, Landgren S, Backstrom T. The effects of allopregnanolone, pregnenolone sulphate and pregnenolone on the CA1 population spike of the rat hippocampus after 17 beta-oestradiol priming. Acta Physiol Scand 1997; 159(4):343–344.

    Article  PubMed  CAS  Google Scholar 

  15. Birzniece V, Bäckström T, Johansson IM, et al. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res Rev 2006; 51:212–239.

    Article  PubMed  CAS  Google Scholar 

  16. Strömberg J, Bäckström T, Lundgren P. Rapid non-genomic effect of glucocorticoid metabolites and neurosteroids on the gamma-aminobutyric acid-A receptor. Eur J Neurosci 2005; 21:2083–2088.

    Article  PubMed  Google Scholar 

  17. Celotti F, Melcangi RC, Martini L. The 5 alpha-reductase in the brain: molecular aspects and relation to brain function. Front Neuroendocrinol 1992; 13:163–215.

    PubMed  CAS  Google Scholar 

  18. Purdy RH, Morrow AL, Moore Jr. PH, et al. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88:4553–4557.

    Article  PubMed  CAS  Google Scholar 

  19. Bixo M, Andersson A, Winblad B, et al. Progesterone, 5alpha-pregnane-3, 20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 1997; 764:173–178.

    Article  PubMed  CAS  Google Scholar 

  20. Wang M, Seippel L, Purdy RH, et al. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3, 20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J Clin Endocrinol Metab 1996; 81(3):1076–1082.

    Article  PubMed  CAS  Google Scholar 

  21. Luisi S, Petraglia F, Benedetto C, et al. Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab 2000; 85:2429–2433.

    Article  PubMed  CAS  Google Scholar 

  22. Serra M, Pisu MG, Littera M, et al. Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem 2000; 75:732–740.

    Article  PubMed  CAS  Google Scholar 

  23. Rasmuson S, Andrew R, Nasman B, et al. Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer’s disease. Biol Psychiatry 2001; 49(6):547–552.

    Article  PubMed  CAS  Google Scholar 

  24. Sutton J. Memory, In Ed. Zalta EN. The Stanford Encyclopedia of Philosophy (Summer 2004 Edition), http://plato.stanford.edu/archives/sum2004/entries/memory/.

  25. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 1984; 11:47–60.

    Article  CAS  Google Scholar 

  26. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001; 36:60–90.

    Article  PubMed  Google Scholar 

  27. American Psychiatric Association. Diagnostic and Statistical manual of mental disorders, 4th edn. Washington, DC, 1994.

    Google Scholar 

  28. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256(3):240–246.

    Article  PubMed  CAS  Google Scholar 

  29. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306(3):821–827.

    Article  PubMed  CAS  Google Scholar 

  30. Wenk GL. Neuropathologic changes in Alzheimer’s disease: potential targets for treatment. J Clin Psychiatry 2006; 67 (Suppl 3):3–7.

    PubMed  CAS  Google Scholar 

  31. Näsman B, Olsson T, Viitanen M, et al. A subtle disturbance in the feedback regulation of the hypothalamic-pituitary-adrenal axis in the early phase of Alzheimer’s disease. Psychoneuroendocrinology 1995; 20(2):211–220.

    Article  PubMed  Google Scholar 

  32. Astur RS, Taylor LB, Mamelak AN, et al. Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res 2002; 132:7–84.

    Article  Google Scholar 

  33. Farr SA, Flood JF, Morley JE. The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posttrial memory processing in the hippocampus. Neurobiol Learn Mem 2000; 73:150–167.

    Article  PubMed  CAS  Google Scholar 

  34. Teng E, Squire LR. Memory for places learned long ago is intact after hippocampal damage. Nature 1999; 400:675–677.

    Article  PubMed  CAS  Google Scholar 

  35. Maguire EA, Frackowiak RS, Frith CD. Recalling routes around london: activation of the right hippocampus in taxi drivers. J Neurosci 1997; 17:7103–7110.

    PubMed  CAS  Google Scholar 

  36. Maguire EA, Gadian DG, Johnsrude IS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 2000; 97:4398–4403.

    Article  PubMed  CAS  Google Scholar 

  37. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004; 84:87–136.

    Article  PubMed  CAS  Google Scholar 

  38. Meiri N, Sun MK, Segal Z, et al. Memory and long-term potentiation (LTP) dissociated: normal spatial memory despite CA1 LTP elimination with Kv1.4 antisense. Proc Natl Acad Sci USA 1998; 95:15037–15042.

    Article  PubMed  CAS  Google Scholar 

  39. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996; 87:1327–1338.

    Article  PubMed  CAS  Google Scholar 

  40. Nakazawa K, Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 2002; 297:211–218.

    Article  PubMed  CAS  Google Scholar 

  41. Landgren S, Wang MD, Backstrom T, et al. Interaction between 3 alpha-hydroxy-5 alpha-pregnan-20-one and carbachol in the control of neuronal excitability in hippocampal slices of female rats in defined phases of the oestrus. Acta Physiol Scand 1998; 162:77–88.

    Article  PubMed  CAS  Google Scholar 

  42. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971; 34:171–175.

    Article  PubMed  Google Scholar 

  43. Dubrovsky B, Tatarinov-Levin A, Harris J. Effects of the active neurosteroid allotetrahydrodeoxycorticosterone on long-term potentiation in the rat hippocampus: implications for depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  44. Wei H, Xiong W, Yang S, et al. Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci Lett 2002; 324:181–184.

    Article  PubMed  CAS  Google Scholar 

  45. George O, Vallée M, Le Moal M, et al. Neurosteroids and cholinergic systems: implications for sleep and cognitive processes and potential role of age-related changes. Psychopharmacology (Berl) 2006; 186(3):402–413.

    Article  CAS  Google Scholar 

  46. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003; 140:1–47.

    Article  PubMed  CAS  Google Scholar 

  47. Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 2007; 8(5):621–632.

    Article  PubMed  CAS  Google Scholar 

  48. Buhot MC, Martin S, Segu J. Role of serotonin in memory impairment. Ann Med 2000; 32:210–221.

    Article  PubMed  CAS  Google Scholar 

  49. Richter-Levin G, Segal M. Age-related cognitive deficits in rats are associated with a combined loss of cholinergic and serotonergic functions. Ann NY Acad Sci 1993; 695:254–257.

    Article  PubMed  CAS  Google Scholar 

  50. Devan BD, Goad EH, Petri HL. Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol Learn Mem 1996; 66:305–323.

    Article  PubMed  CAS  Google Scholar 

  51. Cain DP. Prior non-spatial pretraining eliminates sensorimotor disturbances and impairments in water maze learning caused by diazepam. Psychopharmacology (Berl) 1997; 130:313–319.

    Article  CAS  Google Scholar 

  52. Holbrook AM, Crowther R, Lotter A, et al. Meta-analysis of benzodiazepine use in the treatment of insomnia. CMAJ 2000; 162:225–233.

    PubMed  CAS  Google Scholar 

  53. Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2002; 2:795–816.

    Article  PubMed  CAS  Google Scholar 

  54. Korpi ER, Debus F, Linden AM, et al. Does ethanol act preferentially via selected brain GABA(A) receptor subtypes? The current evidence is ambiguous. Alcohol 2007; 41(3):163–176.

    Article  PubMed  CAS  Google Scholar 

  55. Belelli D, Casula A, Ling A, et al. The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 2002; 43(4):651–661.

    Article  PubMed  CAS  Google Scholar 

  56. Collinson N, Kuenzi FM, Jarolimek W, et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 2002; 22:5572–5580.

    PubMed  CAS  Google Scholar 

  57. Maubach K. 2003. GABA(A) receptor subtype selective cognition enhancers. J Med Chem 2003; 46(11):233–239.

    Google Scholar 

  58. Miller LG, Greenblatt DJ, Barnhill JG, et al. Chronic benzodiazepine administration. I. Tolerance is associated with benzodiazepine receptor downregulation and decreased gamma-aminobutyric acidA receptor function. J Pharmacol Exp Ther 1988; 246:170–176.

    PubMed  CAS  Google Scholar 

  59. Birzniece V, Türkmen S, Lindblad C, et al. GABA(A) receptor changes in acute allopregnanolone tolerance. Eur J Pharmacol 2006; 535(1–3):125–134.

    Article  PubMed  CAS  Google Scholar 

  60. Yu R, Follesa P, Ticku MK. Down-regulation of the GABA receptor subunits mRNA levels in mammalian cultured cortical neurons following chronic neurosteroid treatment. Brain Res Mol Brain Res 1996; 41:163–168.

    Article  PubMed  CAS  Google Scholar 

  61. Yu R, Ticku MK. Effects of chronic pentobarbital treatment on the GABAA receptor complex in mammalian cortical neurons. J Pharmacol Exp Ther 1995; 275(3):1442–1446.

    PubMed  CAS  Google Scholar 

  62. Concas A, Mostallino MC, Porcu P, et al. Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci USA 1998; 95:13284–13289.

    Article  PubMed  CAS  Google Scholar 

  63. Backstrom T, Andreen L, Birzniece V, et al. The role of hormones and hormonal treatments in premenstrual syndrome. CNS Drugs 2003; 17(5):325–342.

    Article  PubMed  CAS  Google Scholar 

  64. Gulinello M, Gong QH, Smith SS. Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat. Brain Res 2001; 910(1–2):55–66.

    Article  PubMed  CAS  Google Scholar 

  65. Smith SS, Gong QH, Hsu FC, et al. GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 1998; 392(6679):926–930.

    Article  PubMed  CAS  Google Scholar 

  66. Löfgren M, Johansson IM, Meyerson B, et al. Progesterone withdrawal effects in the open field test can be predicted by elevated plus maze performance. Horm Behav 2006; 50(2):208–215.

    Article  PubMed  CAS  Google Scholar 

  67. de Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 1998; 394:787–790.

    Article  PubMed  CAS  Google Scholar 

  68. Droogleever Fortuyn HA, van Broekhoven F, Span PN, et al. Effects of Ph.D. examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology 2004; 29(10):1341–1344.

    Article  PubMed  CAS  Google Scholar 

  69. Näsman B, Olsson T, Backstrom T, et al. Serum dehydroepiandrosterone sulfate in Alzheimer’s disease and in multi-infarct dementia. Biol Psychiatry 1991; 30(7):684–690.

    Article  PubMed  Google Scholar 

  70. Näsman B, Olsson T, Fagerlund M, et al. Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer’s disease. Biol Psychiatry 1996; 39(5):311–318.

    Article  PubMed  Google Scholar 

  71. Barnes EM Jr. Use-dependent regulation of GABAA receptors. Int Rev Neurobiol 1996; 39:53–76.

    Article  PubMed  CAS  Google Scholar 

  72. Yu R, Ticku MK. Chronic neurosteroid treatment decreases the efficacy of benzodiazepine ligands and neurosteroids at the gamma-aminobutyric acidA receptor complex in mammalian cortical neurons. J Pharmacol Exp Ther 1995; 275(2):784–789.

    PubMed  CAS  Google Scholar 

  73. N-Wihlbäck AC, Sundström-Poromaa I, Bäckström T. Action by and sensitivity to neuroactive steroids in menstrual cycle related CNS disorders. Psychopharmacology (Berl) 2006; 186(3):388–401.

    Article  CAS  Google Scholar 

  74. Drugan RC, Morrow AL, Weizman R, et al. Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res 1989; 487(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  75. Sundstrom I, Ashbrook D, Bäckström T. Reduced benzodiazepine sensitivity in patients with premenstrual syndrome: a pilot study. Psychoneuroendocrinology 1997; 22:25–38.

    Article  PubMed  CAS  Google Scholar 

  76. Sundstrom I, Andersson A, Nyberg S, et al. Patients with premenstrual syndrome have a different sensitivity to a neuroactive steroid during the menstrual cycle compared to control subjects. Neuroendocrinology 1998; 67:126–138.

    Article  PubMed  CAS  Google Scholar 

  77. Nyberg S, Wahlstrom G, Backstrom T, et al. Altered sensitivity to alcohol in the late luteal phase among patients with premenstrual dysphoric disorder. Psychoneuroendocrinology 2004; 29(6):767–777.

    Article  PubMed  CAS  Google Scholar 

  78. Türkmen S, Löfgren M, Birzniece V, et al. Tolerance development to Morris water maze test impairments induced by acute allopregnanolone. Neuroscience 2006; 139(2):651–659.

    Article  PubMed  CAS  Google Scholar 

  79. Maki PM, Rich BJ, Rosenbaum RS. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia 2002; 40:518–529.

    Article  PubMed  Google Scholar 

  80. Maki PM, Zonderman AB, Resnick RM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry 2001; 158:227–233.

    Article  PubMed  CAS  Google Scholar 

  81. Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 1992; 17:485–495.

    Article  PubMed  CAS  Google Scholar 

  82. Sherwin BB, Tulandi T. “Add-back” estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri. J Clin Endocrinol Metab 1996; 81:2545–2549.

    Article  PubMed  CAS  Google Scholar 

  83. Paganini-Hill A, Henderson VW. Estrogen replacement therapy and risk of Alzheimer disease. Arch Intern Med 1996; 156(19):2213–2217.

    Article  PubMed  CAS  Google Scholar 

  84. Harris KM, Kater SB. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 1994; 17:341–371.

    Article  PubMed  CAS  Google Scholar 

  85. Gould E, Woolley CS, Frankfurt M, et al. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10:1286–1291.

    PubMed  CAS  Google Scholar 

  86. Weiland NG. Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology 1992; 131:662–668.

    Article  PubMed  CAS  Google Scholar 

  87. Woolley SC, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci 1994; 14:7680–7687.

    PubMed  CAS  Google Scholar 

  88. Murphy DD, Cole NB, Greenberger V, et al. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 1998; 18:2550–2559.

    PubMed  CAS  Google Scholar 

  89. Chesler EJ. Acute administration of estrogen and progesterone impairs the acquisition of the spatial morris water maze in ovariectomized rats. Horm Behav 2000; 38(4):234–242.

    Article  PubMed  CAS  Google Scholar 

  90. Vallee M, Mayo W, Koob GF, et al. Neurosteroids in learning and memory processes. Int Rev Neurobiol 2001; 46:273–320.

    Article  PubMed  CAS  Google Scholar 

  91. Mayo W, Dellu F, Robel P, et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res 1993; 607:324–328.

    Article  PubMed  CAS  Google Scholar 

  92. Brett M, Baxendale M. Motherhood and memory: a review. Psychoneuroendocrinology 2001; 26:339–362.

    Article  PubMed  CAS  Google Scholar 

  93. Oatridge A, Holdcroft A, Saeed N, et al. Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. AJNR Am J Neuroradiol 2002; 23:19–26.

    PubMed  Google Scholar 

  94. Man MS, MacMillan I, Scott J, et al. Mood, neuropsychological function and cognitions in premenstrual dysphoric disorder. Psychol Med 1999; 29:727–733.

    Article  PubMed  CAS  Google Scholar 

  95. Wisden W, Laurie DJ, Monyer H, et al. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992; 12:1040–1062.

    PubMed  CAS  Google Scholar 

  96. van Wingen GA, van Broekhoven F, Verkes RJ, et al. How progesterone impairs memory for biologically salient stimuli in healthy young women. J. Neurosci. 2007; 27(42):11416–23.

    Article  PubMed  CAS  Google Scholar 

  97. Kask K, Nilsson L-G, Bäckström T, et al. Allopregnanolone deteriorates episodic memory in healthy females. 2007; Manuscript.

    Google Scholar 

  98. Turner DM, Ransom RW, Yang JS, et al. Steroid anesthetics and naturally occurring analogs modulate the gamma-aminobutyric acid receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther 1989; 248:960–966.

    PubMed  CAS  Google Scholar 

  99. Frye CA. Some rewarding effects of androgens may be mediated by actions of its 5alpha-reduced metabolite 3alpha-androstanediol. Pharmacol Biochem Behav 2007; 86(2):354–367.

    Article  PubMed  CAS  Google Scholar 

  100. Edinger KL, Frye CA. Androgens’ effects to enhance learning may be mediated in part through actions at estrogen receptor-beta in the hippocampus. Neurobiol Learn Mem 2007; 87(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  101. Edinger KL, Frye CA. Androgens’ performance-enhancing effects in the inhibitory avoidance and water maze tasks may involve actions at intracellular androgen receptors in the dorsal hippocampus. Neurobiol Learn Mem 2007; 87(2):201–208.

    Article  PubMed  CAS  Google Scholar 

  102. Matthews DB, Morrow AL, Tokunaga S, et al. Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin Exp Res 2002; 26:1747–1751.

    PubMed  CAS  Google Scholar 

  103. Silvers JM, Tokunaga S, Berry RB, et al. Impairments in spatial learning and memory: ethanol, allopregnanolone, and the hippocampus. Brain Res Brain Res Rev 2003; 43(3):275–284.

    Article  PubMed  CAS  Google Scholar 

  104. Gee KW, Chang WC, Brinton RE, et al. GABA-dependent modulation of the Cl- ionophore by steroids in rat brain. Eur J Pharmacol 1987; 136:419–423.

    Article  PubMed  CAS  Google Scholar 

  105. Carl P, Hogskilde S, Nielsen JW, et al. Pregnanolone emulsion. A preliminary pharmacokinetic and pharmacodynamic study of a new intravenous anaesthetic agent. Anaesthesia 1990; 45(3):189–197.

    Article  PubMed  CAS  Google Scholar 

  106. Timby E, Balgård M, Nyberg S, et al. Pharmacokinetic and behavioral effects of allopregnanolone in healthy women. Psychopharmacology 2006; 186(3):414–424.

    Article  PubMed  CAS  Google Scholar 

  107. Backstrom T, Zetterlund B, Blom S, et al. Effects of intravenous progesterone infusions on the epileptic discharge frequency in women with partial epilepsy. Acta Neurol Scand 1984; 69(4):240–248.

    Article  PubMed  CAS  Google Scholar 

  108. Landgren S, Aasly J, Backstrom T, et al. The effect of progesterone and its metabolites on the interictal epileptiform discharge in the cat’s cerebral cortex. Acta Physiol Scand 1987; 131(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  109. Wieland S, Lan NC, Mirasedeghi S, et al. Anxiolytic activity of the progesterone metabolite 5 alpha-pregnan-3 alpha-o1–20-one. Brain Res 1991; 56(11):263–268.

    Article  Google Scholar 

  110. Ladurelle NB, Eychenne D, Denton J, et al. Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res 2000; 858:371–379.

    Article  PubMed  CAS  Google Scholar 

  111. Riedel G, Micheau J, Lam AG, et al. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 1999; 2:898–905.

    Article  PubMed  CAS  Google Scholar 

  112. Vallee M, Mayo W, Le Moal M. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Brain Res Rev 2001; 37:301–312.

    Article  PubMed  CAS  Google Scholar 

  113. Kokate TG, Juhng KN, Kirkby RD, et al. Convulsant actions of the neurosteroid pregnenolone sulfate in mice. Brain Res 1999; 831:119–124.

    Article  PubMed  CAS  Google Scholar 

  114. Lundgren P, Stromberg J, Backstrom T Wang M. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3beta-hydroxy-5alpha-pregnan-20-one (isoallopregnanolone). Brain Res 2003; 982:45–53.

    Article  PubMed  CAS  Google Scholar 

  115. Wang MD, Backstrom T, Landgren S. The inhibitory effects of allopregnanolone and pregnanolone on the population spike, evoked in the rat hippocampal CA1 stratum pyramidale in vitro, can be blocked selectively by epiallopregnanolone. Acta Physiol Scand 2000; 169:333–341.

    Article  PubMed  CAS  Google Scholar 

  116. Bäckström T, Wahlström G, Wahlström K, et al. Isoallopregnanolone; an antagonist to the anaesthetic effect of allopregnanolone in male rats. Eur J Pharmacol 2005; 512(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  117. Turkmen S, Lundgren P, Birzniece V, et al. 3beta-20beta-dihydroxy-5alpha-pregnane (UC1011) antagonism of the GABA potentiation and the learning impairment induced in rats by allopregnanolone. Eur J Neurosci 2004; 20:1604–1612.

    Article  PubMed  Google Scholar 

  118. Wang M, He Y, Eisenman LN, et al. 3beta -hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J Neurosci 2002; 22:3366–3375.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Bückström, T. et al. (2008). Neuroactive Steroids: Effects on Cognitive Functions. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics