Skip to main content

Can We Use Human Embryonic Stem Cells to Treat Brain and Spinal Cord Injury and Disease?

  • Chapter
Stem Cells, Human Embryos and Ethics

The potential use of human embryonic stem cells for the treatment of neurological disease and injury is discussed from the perspectives of two common disease scenarios. Spinal cord injury and diseases such as multiple sclerosis that affect specific cell types in the spinal cord represent a substantial proportion of all neuropathologies and are among the most heavily targeted by efforts to establish stem cell-based replacement therapies. Parkinson’s disease selectively destroys a single type of neuron in a restricted region of the brain. For this reason it was the first neurological disease for which cell replacement therapy was attempted in humans and is considered one of the most amenable to treatment using stem cells. Although the replacement of a single cell type or the repair of a restricted lesion would appear to be relatively straightforward, several issues conspire to make stem cell-based replacement therapy in the brain and spinal cord substantially more challenging. These include the inherent complexity of neural circuits, the problems of ensuring the survival of stem cells and their derivatives after implantation and directing their differentiation into the appropriate cell types, and the increased refractoriness of chronic injury to treatment due to changes in the cellular environment. A layman’s guide to the composition of brain and spinal cord tissue is provided, and an update of recent advances in basic neuroscience and stem cell research with relevance to these issues is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, E., Tryggvason, U., Deng, Q., Friling, S., Alekseenko, Z., Robert, B. Perlmann, T., and Ericson, J. (2006). “Identification of intrinsic determinants of midbrain dopamine neurons”, Cell 124:393–405.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, K., Molcanyi M., Riess, P., Elbers, A., Pohl, E., Sachinidis, A., Hescheler, J., Neugebauer, E., and Schafer, U. (2007). “Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: cell line-dependent differences”, J Neurosci Res 85:1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Bjugn, R. (1993). “The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse–with a comparative note on the rat spinal cord”, Brain Res 627:25–33.

    Article  PubMed  CAS  Google Scholar 

  • Bjugn, R. and Gundersen, K. (1993). “Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical dissector”, J Comp Neurol 328:406–414.

    Article  PubMed  CAS  Google Scholar 

  • Björklund, A. and Lindvall, O. (2000). “Cell replacement therapies for central nervous system disorders”, Nat Neurosci 3:537–544.

    Article  PubMed  Google Scholar 

  • Deshpande, D. M., Kim, Y. S, Martinez, T., Carmen, J., Dike, S., Shats, I., Rubin, L. L., Drummond, J., Krishnan, C., Hoke, A., Maragakis, N., Shefner, J., Rothstein, J. D., and Kerr, D. A. (2006). “Recovery from paralysis in adult rats using embryonic stem cells”, Ann Neurol 60:32–44.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, I. D. (2005). “Oligodendrocytes and stem cell transplantation: their potential in the treatment of leukoencephalopathies”, J Inherit Metab Dis 28:357–368.

    Article  PubMed  CAS  Google Scholar 

  • Goulding, M., Lanuza, G., Sapir, T., and Narayan, S. (2002). “The formation of sensorimotor circuits”, Curr Opin Neurobiol 12:508–515.

    Article  PubMed  CAS  Google Scholar 

  • Kamei, N., Tanaka, N., Oishi, Y., Hamasaki, T., Nakanishi, K., Sakai, N., and Ochi, M (2007). “BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures”, Spine 32:1272–1278.

    Article  PubMed  Google Scholar 

  • Kiehn, O. (2006). “Locomotor circuits in the mammalian spinal cord”, Annu Rev Neurosci 29:279–306.

    Article  PubMed  CAS  Google Scholar 

  • Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., and Steward, O. (2005). “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury”, J Neurosci 25:4694–4705.

    Article  PubMed  CAS  Google Scholar 

  • Kitada, M. and Rowitch, D. H. (2006). “Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord”, Glia 54:35–46.

    Article  PubMed  Google Scholar 

  • Kuipers, S. D. and Bramham, C. R. (2006). “Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy”, Curr Opin Drug Discov Devel 9:580–586.

    PubMed  CAS  Google Scholar 

  • Liu, Z., Hu, X., Cai, J., Liu, B., Peng, X., Wegner, M., and Qiu, M. (2007). “Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms”, Dev Biol 302:683–693.

    Article  PubMed  CAS  Google Scholar 

  • Miles, G. B., Yohn, D. C., Wichterle, H., Jessell, T. M., Rafuse, V. F., and Brownstone R. M. (2004). “Functional properties of motoneurons derived from mouse embryonic stem cells”, J Neurosci 24:7848–7858.

    Article  PubMed  CAS  Google Scholar 

  • Nissen, U. V., Mochida, H., and Glover, J. C. (2005). “Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord”, J Comp Neurol 483:30–47.

    Article  PubMed  Google Scholar 

  • Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., and Olanow, C.W. (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci, 23:S8–S19.

    Article  PubMed  CAS  Google Scholar 

  • Shirasaki, R. and Pfaff, S. L. (2002). “Transcriptional codes and the control of neuronal identity”, Annu Rev Neurosci 25:251–281.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H. and Minger, S. L. (2005). “Regenerative medicine in Parkinson’s disease: generation of mesencephalic dopaminergic cells from embryonic stem cells”, Curr Opin Biotechnol 16:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Thuret, S., Moon, L. D., and Gage, F. H. (2006). “Therapeutic interventions after spinal cord injury”, Nat Rev Neurosci 7:628–643.

    Article  PubMed  CAS  Google Scholar 

  • Wichterle, H., Lieberam, I., Porter, J. A., and Jessell, T. M. (2002). “Directed differentiation of embryonic stem cells into motor neurons”, Cell 110:385–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Glover, J.C. (2008). Can We Use Human Embryonic Stem Cells to Treat Brain and Spinal Cord Injury and Disease?. In: Østnor, L. (eds) Stem Cells, Human Embryos and Ethics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6989-5_5

Download citation

Publish with us

Policies and ethics