Skip to main content

Plant Lectins as Part of the Plant Defense System Against Insects

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA (2003) Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol 3:329–335

    Article  Google Scholar 

  • Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033

    Article  CAS  Google Scholar 

  • Bano-Maqbool S, Riazuddin S, Loc NT, Gatehouse AMR., Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    Article  Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354

    Article  Google Scholar 

  • Bourne Y, Astoul CH, Zamboni V, Peumans WJ, Menu-Bouaouiche L, Van Damme EJM, Barre A, Rougé P (2002) Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 364:173–180

    PubMed  CAS  Google Scholar 

  • Carlini CR, Grossi-de-Sà MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    CAS  Google Scholar 

  • Chang T, Chen L, Chen S, Cai H, Liu X, Xiao G, Zhu Z (2003) Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid (Myzus persicae). Transgenic Res 12:607–614

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Peumans WJ, Hause B, Bras J, Kumar M, Proost P, Barre A, Rougé P, Van Damme EJM (2002) Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. FASEB J 16:905–907

    PubMed  CAS  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    Article  PubMed  CAS  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    Article  PubMed  CAS  Google Scholar 

  • Cristofoletti PT, de Sousa FA, Rahbé Y, Terra WR (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins. FEBS J 273:5574–5588

    Article  PubMed  CAS  Google Scholar 

  • Czapla TH (1997) Plant lectins as insect control proteins in transgenic plants. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor and Francis, London, pp 123–138

    Google Scholar 

  • Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485

    Google Scholar 

  • Down RE, Fitches EC, Wiles DP, Corti P, Bell HA, Gatehouse JA, Edwards JP (2006) Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci 62:77–85

    Article  PubMed  CAS  Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WD, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    Article  CAS  Google Scholar 

  • Du J, Foissac X, Carss A, Gatehouse AMR, Gatehouse JA (2000) Ferritin acts as the most abundant binding protein for snowdrop lectin in the midgut of rice brown planthoppers (Nilaparvata lugens). Insect Biochem Mol Biol 30:297–305

    Article  PubMed  CAS  Google Scholar 

  • Dutta I, Majumder P, Saha P, Sakar A, Ray K, Das S (2005a) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007

    Article  CAS  Google Scholar 

  • Dutta I, Saha P, Majumder, P, Sakar A, Chakraborti D, Banerjee S, Das S (2005b) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  CAS  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina – Mechanism of action. Entomol Exp Appl 72:1–10

    Article  CAS  Google Scholar 

  • Fitches E, Audsley N, Gatehouse JA, Edwards JP (2002) Fusion proteins containing neuropeptides as novel insect contol agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem Mol Biol 32:1653–1661

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AM, Edwards JP, Gatehouse JA (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Gatehouse JA (1998) A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J Insect Physiol 44:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Woodhouse SD, Edwards JP, Gatehouse, J.A. (2001) In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jack bean (Canavalia ensiformis; ConA) lectins within tomato moth (Lacanobia oleracea) larvae: mechanisms of insecticidal action. J Insect Physiol 47:777–787

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Howe DS, Flemming JE, Hilder VA, Gatehouse JA (1991) Biochemical basis of insect resistance in winged bean (Psophocarpus tetragonolobus) seeds. J Sci Food Agric 55:63–74

    Article  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Gfeller A, Farmer EE (2004). Keeping the leaves green above us. Science 306:1515–1516

    Article  PubMed  CAS  Google Scholar 

  • Giovanini MP, Saltmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 8:69–82

    Article  CAS  Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins, properties, functions, and applications in biology and medicine. Academic Press, Orlando, USA, pp 33–247

    Google Scholar 

  • Guo HN, Jia YT, Zhou YG, Zhang ZS, Ouyang Q, Jiang Y, Tian YC (2004) Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae. Acta Bot Sin 46:1100–1105

    CAS  Google Scholar 

  • Gupta GP, Birah A, Rani S (2005) Effect of plant lectins on growth and development of American bollworm (Helicoverpa armigera). Indian J Agric Sci 75:207–212

    CAS  Google Scholar 

  • Habibi J, Backus EA, Czapla TH (1993) Plant lectins affect survival of the potato leafhopper (Homoptera: Cicadellidae). J Econ Entomol 86:945–951

    CAS  Google Scholar 

  • Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238–245

    CAS  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  PubMed  CAS  Google Scholar 

  • Harper SM, Crenshaw RW, Mullins MA, Privalle LS (1995) Lectin binding to insect brush border membranes. J Econ Entomol 88:1197–1202

    CAS  Google Scholar 

  • Harper MS, Hopkins TL, Czapla TH (1998) Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30:166–176

    Article  CAS  PubMed  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell C, Timans JC, Peumans WJ, Van Damme EJM, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    Article  CAS  Google Scholar 

  • Huesing JE, Murdock LL, Shade RE (1991) Effect of wheat germ isolectins on development of cowpea weevil. Phytochemistry 30:785–788

    Article  CAS  Google Scholar 

  • Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Ent Zool 24:281–286

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed alpha-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    Article  CAS  Google Scholar 

  • Kaku H, Van Damme EJM, Peumans WJ, Goldstein IJ (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch Biochem Biophys 279:298–304

    Article  PubMed  CAS  Google Scholar 

  • Kaku H, Van Damme EJM, Peumans WJ, Goldstein IJ (1992) New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs. Carbohydr Res 229:347–353

    Article  PubMed  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981

    Article  CAS  Google Scholar 

  • Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J (2006) A tuber lectin from Arisaema jacquemontii Blume with anti-insect and anti-proliferative properties. J Biochem Mol Biol 39:432–440

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002). Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    Article  CAS  Google Scholar 

  • Lannoo N, Peumans WJ, Van Pamel E, Alvarez R, Xiong TC, Hause G, Mazars C, Van Damme EJM (2006) Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans. FEBS Lett 580:6329–6337

    Article  PubMed  CAS  Google Scholar 

  • Larue-Achagiotis C, Picard M, Louis-Sylvestre J (1992) Feeding behavior in rats on a complete diet containing Concanavalin A. Reprod Nutr Dev 32:343–350

    Article  PubMed  CAS  Google Scholar 

  • Lehane MJ (1997) Peritrophic membrane, structure and function. Ann Rev Entomol 42:525–550

    Article  CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208

    PubMed  CAS  Google Scholar 

  • Macedo MLR, Damico DCS, Freire MD, Toyama MH, Marangoni S, Novello JC (2003) Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J Agric Food Chem 51:2980–2986

    Article  PubMed  CAS  Google Scholar 

  • Macedo ML, Freire MD, da Silva MB, Coelho LC (2006) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A Mol Integr Physiol 146:486–498

    Article  PubMed  CAS  Google Scholar 

  • Majumder P, Banerjee S, Das S (2004) Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj J 20:525–530

    Article  PubMed  CAS  Google Scholar 

  • Majumder P, Mondal HA, Das S (2005) Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem 53:6725–6729

    Article  PubMed  CAS  Google Scholar 

  • Melander M, Ahman I, Kamnert I, Stromdahl AC (2003) Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res 12:555–567

    Article  PubMed  CAS  Google Scholar 

  • Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29:85–89

    Article  CAS  Google Scholar 

  • Murdock LL, Shade RE (2002) Lectins and protease inhibitors as plant defenses against insects. J Agric Food Chem 50:6605–6611

    Article  PubMed  CAS  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002). Caterpillar salvia beats plant defenses. Nature 416:599–600

    Article  PubMed  CAS  Google Scholar 

  • Neuteboom LW, Kunimitsu WY, Webb D, Christopher DA (2002) Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development. Plant Sci 163:1021–1035

    Article  CAS  Google Scholar 

  • Noghabi SS, Van Damme EJM, Smagghe G (2006) Bioassays for insecticidal activity of iris ribosome-inactivating proteins expressed in tobacco plants. Commun Agric Appl Biol Sci 71:285–289

    CAS  Google Scholar 

  • Okeola OG, Machuka J (2001) Biological effects of African yam bean lectins on Clavigralla tomentosicollis (Hemiptera: Coreidae). J Econ Entomol 94:724–729

    PubMed  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Paes NS, Gerhardt IR, Coutinho MV, Yokoyama M, Santana E, Harris N, Chrispeels MJ, de Sa MFG (2000) The effect of arcelin-1 on the structure of the midgut of bruchid larvae and immunolocalization of the arcelin protein. J Insect Physiol 46:393–402

    Article  PubMed  CAS  Google Scholar 

  • Parret AH, Schoofs G, Proost P, De Mot R (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908

    Article  PubMed  CAS  Google Scholar 

  • Parret AH, Temmerman K, De Mot R (2005) Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:5197–5207

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Barre A., Bras J, Rougé P, Proost P, Van Damme EJM (2002) The liverwort contains a lectin that is structurally and evolutionary related to the monocot mannose-binding lectins. Plant Physiol 129:1054–1065

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Barre A, Hao Q, Rougé P, Van Damme EJM (2000) Higher plants developed structurally different motifs to recognize foreign glycans. Trends Glycosci Glycotechnol 12:83–101

    CAS  Google Scholar 

  • Peumans WJ, Fouquaert E, Jauneau A, Rougé P, Lannoo N, Hamada H, Alvarez R, Devreese B, Van Damme EJM (2007) The liverwort Marchantia polymorpha expresses orthologs of the fungal Agaricus bisporus agglutinin family. Plant Physiol 144:637–647

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Hao Q, Van Damme EJM (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Smeets K, Van Nerum K, Van Leuven F, Van Damme EJM. (1997) Lectin and alliinase are the predominant proteins in the nectar from leek (Allium porrum) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1996) Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci Technol 7:132–138

    Article  CAS  Google Scholar 

  • Pham Trung N, Fitches E, Gatehouse JA (2006) A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol 6:34–42

    Article  CAS  Google Scholar 

  • Poulsen M, Kroghsbo S, Schroder M, Wilcks A, Jacobsen H, Miller A, Frenzel T, Danier J, Rychlik M, Shu Q, Emami K, Sudhakar D, Gatehouse A, Engel KH, Knudsen I (2007) A 90-day safety study in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food Chem Toxicol 45:350–363

    Article  PubMed  CAS  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettex cinciteps. Entomol Exp Appl 66:119–126

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1995a) Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl 75:51–59

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Peumans WJ, Van Damme EJM, Boonjawat J, Horsham K, Gatehouse JA (1995b) Different antimetabolic effects of related plant lectins towards nymphal stages of Nilaparvata lugens. Entomol Exp Appl 75:61–65

    Article  CAS  Google Scholar 

  • Powell KS, Spance J, Bharathi M, Gatehouse JA, Gatehouse AMR (1998) Immnuohistochemical and development studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 67:529–539

    Article  Google Scholar 

  • Pusztai A, Ewen SWB, Grant G, Peumans WJ, Van Damme EJM, Rubio L, Bardocz S (1990) The relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46:308–316

    Article  PubMed  CAS  Google Scholar 

  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE (2005) Hfr-2, a wheat cytolytic toxin-like gene, is upregulated by virulent Hessian fly larval feeding. Mol Plant Pathol 6:41–423

    Article  CAS  Google Scholar 

  • Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Article  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  PubMed  CAS  Google Scholar 

  • Rinderle SJ, Goldstein IJ, Matta KL, Ratcliffe RM (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J Biol Chem 264:16123–16131

    PubMed  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142:97–101

    Article  CAS  Google Scholar 

  • Sadeghi A, Smagghe G, Broeders S, Hernalsteens JP, De Greve H, Peumans WJ, Van Damme EJM (2008) Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res 17:9–18

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi A, Van Damme EJM, Peumans WJ, Smagghe G (2006) Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. Phytochemistry 67:2078–2084

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343

    Article  PubMed  CAS  Google Scholar 

  • Sastry MVK, Banerjee P, Patanjali SR, Swamy MJ, Swarnalatha GV, Surolia A (1986) Analysis of the saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1,3)D-GalNAc). J Biol Chem 261:11726–11733

    PubMed  CAS  Google Scholar 

  • Sauvion N, Charles H, Febvay G, Rahbé Y (2004) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 110:31–44

    Article  CAS  Google Scholar 

  • Sauvion N, Rahbé Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the peach potato aphid Myzus persicae. Entomol Exp Appl 79:285–293

    Article  CAS  Google Scholar 

  • Sétamou M, Bernal JS, Mirkov TE, Legaspi JC (2003) Effects of snowdrop lectin on Mexican rice borer (Lepidoptera: Pyralidae) life history parameters. J Econ Entomol 96:950–956

    Article  PubMed  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12:793–796

    Article  CAS  Google Scholar 

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72

    Article  CAS  Google Scholar 

  • Sharma V, Surolia A (1997) Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J Mol Biol 267:433–445

    Article  PubMed  CAS  Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22:1–6

    CAS  Google Scholar 

  • Singh T, Wu JH, Peumans WJ, Rougé P, Van Damme EJM, Alvarez RA, Blixt O, Wu AM (2006) Carbohydrate specificity of an insecticidal lectin isolated from the leaves of Glechoma hederacea (ground ivy) towards mammalian glycoconjugates. Biochem J 393:331–341

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, William S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Subramanyam S, Sardesai N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalo M, Williams CE (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stress. Plant Sci 170:90–103

    Article  CAS  Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H, Suzuki Y (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278:20882–20889

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJM, Allen AK, Peumans WJ (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215:140–144

    Article  Google Scholar 

  • Van Damme EJM, Barre A, Rougé P, Peumans WJ (2004). Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJM, Barre A, Verhaert P, Rougé P, Peumans WJ (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett 397:352–356

    Article  PubMed  Google Scholar 

  • Van Damme EJM, Culerrier R, Barre A, Alvarez R, Rougé, P, Peumans WJ (2007a) A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. Plant Physiol 144:662–672

    Article  CAS  Google Scholar 

  • Van Damme EJM, Hao Q, Chen Y, Barre A, Vandenbussche F, Desmyter S, Rougé P, Peumans WJ (2001) Ribosome-inactivating proteins: a family of plant proteins that do more than inactivate ribosomes. Crit Rev Plant Sci 20:395–465

    Article  Google Scholar 

  • Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998a) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Article  Google Scholar 

  • Van Damme EJM, Peumans WJ, Pusztai A, Bardocz S (1998b) Handbook of plant lectins: properties and biomedical applications. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Van Damme EJM, Rougé P, Peumans WJ (2007b) Carbohydrate–protein interactions: plant lectins. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience – from chemistry to systems biology. Elsevier, Oxford, UK, vol 3,pp 563–599

    Google Scholar 

  • Van Damme EJM, Smeets K, Engelborghs I, Aelbers H, Balzarini J, Pusztai A, Van Leuven F, Goldstein IJ, Peumans WJ (1993) Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant Mol Biol 23:365–376

    Article  PubMed  Google Scholar 

  • Vandenbussche F, Desmyter S, Ciani M, Proost P, Peumans WJ, Van Damme EJM (2004a) Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. Eur J Biochem 271:1508–1515

    Article  CAS  Google Scholar 

  • Vandenbussche F, Peumans WJ, Desmyter S, Proost, P, Ciani M, Van Damme EJM (2004b) The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta 220:211–221

    Article  CAS  Google Scholar 

  • Waljuno K, Scholma RA, Beintema J, Mariono A, Hahn AM (1975) Amino acid sequence of hevein. In: Proceedings of the International Rubber Conference, Kuala Lumpur, vol 2. Rubber Research Institute of Malaysia, Kuala Lumpur, pp 518–531

    Google Scholar 

  • Wang P, Li G, Granados RR (2004). Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34:215–227

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Hause B, Peumans WJ, Smagghe G, Mackie A, Fraser R, Van Damme EJM (2003b) The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiol 132:1322–1334

    Article  CAS  Google Scholar 

  • Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, Van Damme EJM (2003a) Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. Plant J 33:293–304

    Article  CAS  Google Scholar 

  • Wei GQ, Liu RS, Wang Q, Liu WY (2004) Toxicity of two type II ribosome-inactivating proteins (cinnamomin and ricin) to domestic silkworm larvae. Arch Insect Biochem Physiol 57:160–165

    Article  PubMed  CAS  Google Scholar 

  • Williams CE, Collier CC, Nemacheck JA, Liang C, Cambron SE (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J Chem Ecol 28:1411–1428

    Article  PubMed  CAS  Google Scholar 

  • Wu AM (2005) Lectinochemical studies on the glyco-recognition factors of a Tn (α–>Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J Biomed Sci 12:167–184

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    Article  CAS  Google Scholar 

  • Yagi F, Hidaka M, Minami Y, Tadera K (1996) A lectin from leaves of Neoregelia flandria recognizes D-glucose, D-mannose and N-acetylglucosamine, differing from the mannose-specific lectins from other monocotyledonous species. Plant Cell Physiol 37:1007–1012

    PubMed  CAS  Google Scholar 

  • Yao J, Pang Y, Qi H, Wan B, Zhao X, Kong W, Sun X, Tang K (2003) Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Res 12:715–722

    Article  PubMed  CAS  Google Scholar 

  • Young NM, Oomen RP (1992) Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J Mol Biol 228:924–934

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Houles-Astoul C, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AAH, Van Damme EJM (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Li XD, Yuan JZ, Tang ZH, Liu WY (2000) Toxicity of cinnamomin – a new type II ribosome-inactivating protein to bollworm and mosquito. Insect Biochem Mol Biol 30:259–264

    Article  PubMed  CAS  Google Scholar 

  • Zhu K, Huesing JE, Shade RE, Bressan RA, Hasegawa PM, Murdock LL (1996) An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae). Plant Physiol 110:195–202

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA (2001) Functional mechanics of the plant defensive Griffonia simplicifolia lectin II: resistance to proteolysis is independent of glycoconjugate binding in the insect gut. J Econ Entomol 94:1280–1284

    PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Koiwa H, Murdock LL, Bressan RA, Hasegawa PM (1998) Ethylene negatively regulates local expression of plant defense lectin genes. Physiol Plant 104:365–372

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressam RA, Hasegawa PM, Murdock LL (1996) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci USA 95:15123–15128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Damme, E.J. (2008). Plant Lectins as Part of the Plant Defense System Against Insects. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_14

Download citation

Publish with us

Policies and ethics