Skip to main content

Antarctic Yeasts: Biodiversity and Potential Applications

  • Chapter
Yeast Biotechnology: Diversity and Applications

This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

The ability of these yeasts to adapt to the low temperature conditions has also led to investigations directed towards characterizations of cold stress proteins and heat shock proteins so as to understand the role of these stress protein with respect to adaptation. Antarctic yeasts have also been used as model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amoresano, A., Andolfo, A., Corsaro, M.M., Zocchi, I., Petrescu, I., Gerday, C., and Marino, G. 2000. Glycobiology, 10: 451–458.

    Article  CAS  Google Scholar 

  • Anderson, E.M., Larsson, K.M., and Kirk, O. 1998. Biocatal. Biotransform., 16: 181–204.

    Article  CAS  Google Scholar 

  • Arroyo, M., Sanchez-Montero, J.M., and Sinisterra, J.V. 1998. Enzyme Microb. Technol., 24: 3–12.

    Article  Google Scholar 

  • Arsan, J. and Parkin, K.L. 2000. J. Agric. Food Chem., 48: 3738–3743.

    Article  CAS  Google Scholar 

  • Arthur, H. and Watson, K. 1976. J. Bacteriol., 128: 56–68.

    CAS  Google Scholar 

  • Bab'eva, I.P., Lisichkina, G.A, Reshetova, I.S and Danilevich, V.N. 2002. Mikrobiol., 71: 526–532.

    Google Scholar 

  • Babyeva, I.P. and Golubev, W.I. 1969. Microbiology, 38: 436–440.

    Google Scholar 

  • Barnett, J.A., Payne, R.W., and Yarrow, D. 2000. Yeasts: Characteristics and Identification, 3rd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Biswas, K., Shivaji, S. and Prasad, G.S. (unpublished results)

    Google Scholar 

  • Brizzio, S. Turchetti, B. Garcia, V. de Libkind, D. Buzzini, P. and van Broock, M. 2007. Can. J. Microbiol., 53: 519–525.

    Article  CAS  Google Scholar 

  • Cameron, R.E. King, J. and David, C.N. 1970. Holdgate, M. (ed.), Antarctic ecology, vol. 2 In: Academic Press, New York, pp. 702–716.

    Google Scholar 

  • Campbell, I.B. and Claridge, G.G.C. 2000. In: Davidson, W., Howard-Williams, C., and Broady, P., (eds.), Antarctic Ecosystems: models for wider understanding, Caxton Press, Christchurch, pp. 2332–2340.

    Google Scholar 

  • Cavicchioli, R., Siddiqui, K.S., Andrews, D., and Sowers, K.R. 2002. Curr. Opin. Biotechnol., 13: 253–261.

    Article  CAS  Google Scholar 

  • Chattopadhyay, M.K., Jagannadham, M.V., Vairamani, M., and Shivaji, S. 1997. Biochem. Biophys. Res. Commun., 239: 85–90.

    Article  CAS  Google Scholar 

  • Chintalapati, S., Kiran, M.D., and Shivaji, S. 2005. Cell Mol. Biol., 50: 631–642.

    Google Scholar 

  • Chintalapati, S., Prakash, J.S.S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N., and Shivaji, S. 2006. Biochem. J., 398: 207–214.

    Article  CAS  Google Scholar 

  • Chintalapati, S., Prakash, J.S.S., Singh, A.K., Ohtani, S., Suzuki, I., Murata, N., and Shivaji, S. 2007. Biochem. Biophys. Res. Commun., (In press).

    Google Scholar 

  • Claridge, G.G. and Campbell, I.B. 1977. Soil Sci., 123: 337–384.

    Article  Google Scholar 

  • de María, P.D., Carboni-Oerlemans, C., Tuin B., Bargeman, G., van der Meer, A.B. and van Gemert, R. 2005. J. Mol. Catal. B-Enzym., 37: 36–46.

    Article  CAS  Google Scholar 

  • De Mot, R. and Verachtert, H. 1987. Eur. J. Biochem., 164: 643–654.

    Article  Google Scholar 

  • Deegenaars, M.L. and Watson, K. 1997. FEMS Microbiol. Lett., 151: 191–196.

    Article  CAS  Google Scholar 

  • Deegenaars, M.L. and Watson, K. 1998. Extremophiles, 2: 41–49.

    Article  CAS  Google Scholar 

  • Di Menna, M.E. 1960. J. Gen. Microbiol., 23: 295–300.

    CAS  Google Scholar 

  • Di Menna, M.E. 1966a. Antonie van Leeuwenhoek 32: 29–38.

    Article  Google Scholar 

  • Di Menna, M.E. 1966b. Antonie van Leeuwenhoek 32: 25–28.

    Article  Google Scholar 

  • Fell, J.W. 1976. In: Jones E.B.G. (ed.), Recent advances in aquatic mycology, Elek Science, London, pp. 93–124.

    Google Scholar 

  • Fell, J.W. and Hunter, I.L. 1974. Antonie van Leeuwenhoek 40: 307–310.

    Article  CAS  Google Scholar 

  • Fell, J., Boekhout, T., Fonseca, A., Scorzetti, G., and Statzell-Tallman, A. 2000. Int. J. Syst. Evol. Microbiol., 50: 1351–1371.

    CAS  Google Scholar 

  • Fell, J.W. and Statzell-Tallman, A. In: 1998. Kurtzman, C.P. and Fell, J.W., (eds.), The yeasts, a taxonomic study, 4 th edn. Elsevier, B.V. Amserdam.

    Google Scholar 

  • Fell, J.W., Statzell, A.C., Hunter, I.L., and Phaff, H.J. 1969. Antonie van Leeuwenhoek 35: 433–442.

    Article  CAS  Google Scholar 

  • Feller, G. and Gerday, C. 1997. Psychrophilic enzymes: molecular basis of cold adaptation. CMLS Cell Mol. Life Sci., 53: 830–841.

    CAS  Google Scholar 

  • Fonseca, A., Scorzetti, G., and Fell, J.W. 2000. Can. J. Microbiol., 46: 7–27.

    Article  CAS  Google Scholar 

  • Gerday, C., Aittaleb, M., Arpigny, JL., Baise, E., Chessa, JP., Garsoux, G., Petrescu, I., and Feller, G., 1997. Biochim. Biophys. Acta., 1342: 119–131.

    CAS  Google Scholar 

  • Gomes, J., Gomes, I., and Steiner, W., 2000. Extremophiles, 4: 227–235.

    Article  CAS  Google Scholar 

  • Goto, S., Sugiyama, J., and Iizuka, H. 1969. Mycologia, 61: 748–774.

    Article  CAS  Google Scholar 

  • Guffogg, S.P., Thomas-Hall, S., Holloway, P., and Watson, K. 2004. Int. J. Syst. Evol. Microbiol., 54: 275–277.

    Article  CAS  Google Scholar 

  • Hagler, A.N. and Ahearn, D.G. 1987. In: Rose, A.H. and Harrison, J.S. (eds.), The Yeasts, vol. 1 Academic Press, London, UK.

    Google Scholar 

  • Holdgate, MV. 1977. Philos. T. Roy. Soc. B, 279: 5–25.

    Article  Google Scholar 

  • Hsu, AF., Jones, K., Foglia, TA., and Marmer, WN. 2003. Biotechnol. Appl. Biochem., 36: 181–186.

    Article  Google Scholar 

  • Ingram, M. 1958. In: Cook A.H., (ed.), The chemistry and biology of yeasts, Academic Press, New York, pp. 603–633.

    Google Scholar 

  • Inniss, W.E. 1975. Annu. Rev. Microbiol., 29: 445–465.

    Article  CAS  Google Scholar 

  • Jagannadham, M.V., Chattopadhyay, M.K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Mohan Rao, Ch., and Shivaji, S. 2000. Arch. Microbiol., 173: 418–424.

    Article  CAS  Google Scholar 

  • Jagannadham, M.V., Jayathirtha Rao, V., and Shivaji, S. 1991. J. Bacteriol., 173: 7911–7917.

    CAS  Google Scholar 

  • Katayama-Hirayama, K., Koike, Y., Kaneko, H., Kikuo Kobayash, K., and Hirayama, K. 2003. Polar Biosci., 16: 43–48.

    Google Scholar 

  • Kiran, M.D., Annapoorni, S., Suzuki, I., Murata, N., and Shivaji, S. 2005. Extremophiles, 9: 117–125.

    Article  CAS  Google Scholar 

  • Kiran, M.D., Prakash, J.S.S., Annapoorni, S., Dube, S., Kusano, T., Okuyama, H., Murata, N., and Shivaji, S. 2004. Extremophiles, 8: 401–410.

    Article  CAS  Google Scholar 

  • Kirk, O., Borchert, TV., and Fuglsang, CC. 2002. Curr. Opin. Biotechnol., 13: 345–351.

    Article  CAS  Google Scholar 

  • Kirk, O. and Christensen, M.W. 2002. Org. Process Res. Dev., 6: 446–451.

    Article  CAS  Google Scholar 

  • Koops, B.C., Papadimou, E., Verheij, H.M., Slotboom, A.J., and Egmond, M.R. 1999. Appl. Microbiol. Biotechnol., 52: 791–796.

    Article  CAS  Google Scholar 

  • Kurtzman, C.P. and Robnett, C.J. 1998. Antonie van Leeuwenhoek 73: 331–371.

    Article  CAS  Google Scholar 

  • Lachance, MA. and Starmer, WT. 1988. In: Kurtzman, C.P. and Fell, J.W. (eds.), The yeasts, a taxonomic study. 4th edn. Elsevier, B.V. Amserdam.

    Google Scholar 

  • Larios, A., Garcia, HS., Oliart, RM., and Valerio-Alfaro, G. 2004. Appl. Microbiol. Biotechnol., 65: 373–376.

    Article  CAS  Google Scholar 

  • Larkin, J.M. and Stokes, J.L. 1968. Can. J. Microbiol., 14: 97–101.

    CAS  Google Scholar 

  • Libkind, D., Dieguez, MC., Moline, M., Perez, P., Zagarese, HE., and van Broock, M. 2006. Photochem. Photobiol., 82: 972–980.

    Article  CAS  Google Scholar 

  • Lopez-Archilla, AI., Gonzalez, AE., Terron, MC., and Amils, R. 2004. Can. J. Microbiol., 50: 923–934.

    Article  CAS  Google Scholar 

  • Margesin, R., Fauster, V., and Fonteyne, PA. 2005. Lett. Appl. Microbiol., 40: 453–459.

    Article  CAS  Google Scholar 

  • Meyer, E.D., Sinclair, N.A., and Nagy, B. 1975. Appl. Microbiol., 75: 739–744.

    Google Scholar 

  • Middelhoven, W.J. 2005. Antonie Van Leeuwenhoek. 87:101–108.

    Article  CAS  Google Scholar 

  • Montes, M.J., Belloch, C., Galiana, M., Garcia, M.D., Andres, C., Ferrer, S., Tores-Rodriguez, J.M., and Guinea, J. 1999. Syst. Appl. Microbiol.,22: 97–105.

    CAS  Google Scholar 

  • Morita R.Y. 1975. Bact. Rev., 39: 144–167.

    CAS  Google Scholar 

  • Murata, N., Wada, H., and Gombos, Z. 1992. Plant Cell Physiol., 33: 933–941.

    CAS  Google Scholar 

  • Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T., and Tomizuka, N. 2004. Lett. Appl. Microbiol., 38: 383–387.

    Article  CAS  Google Scholar 

  • Passicos, E., Santarelli, X., and Coulon, D. 2004. Biotechnol. Lett., 26: 1073–1076.

    Article  CAS  Google Scholar 

  • Patkar, S., Vind, J., Kelstrup, E., Christensen, MW., Svendsen, A., Borch, K., and Kirk, O. 1998. Chem. Phys. Lipids, 93: 95–101.

    Article  CAS  Google Scholar 

  • Pavlova, K., Grigorova, D., Hristozova, T., and Angelov, A. 2001. Folia Microbiol. (Praha)., 46: 397–401.

    Article  CAS  Google Scholar 

  • Petrescu, I., Lamotte-Brasseur, J., Chessa, J.-P., Claeyssens, M., Devreese, B., Marino, G., and Gerday, C. 2000. Extremophiles, 4: 137–144.

    Article  CAS  Google Scholar 

  • Poliakova, A.V., Chernov, I.Y., and Panikov, N.S. 2001. Microbiology, 70: 617–622.

    Article  Google Scholar 

  • Prabagaran, S.R., Manorama, R., Delille, D., and Shivaji, S. 2006. FEMS Microbiol. Ecol., 59: 342–355.

    Google Scholar 

  • Ray, MK., Devi, KU., Kumar, GS., and Shivaji, S. 1992. Appl. Environ. Microbiol., 58: 1918–1923.

    CAS  Google Scholar 

  • R a y M.K., Seshu Kumar, G., and Shivaji, S. 1994a. Microbiology, 140: 3217–3223.

    Article  CAS  Google Scholar 

  • R a y M.K., Seshu Kumar, G., and Shivaji, S. 1994b. J. Bacteriol., 176: 4243–4249.

    CAS  Google Scholar 

  • Ray M.K., Sitaramamma, T., Ghandhi, S., and Shivaji, S. 1994c. FEMS Microbiol. Lett., 116: 55–60.

    Article  CAS  Google Scholar 

  • Ray M.K., Shivaji, S., Rao, N.S., and Bhargava, P. M. 1989. Polar Biol., 9: 305–309.

    Article  Google Scholar 

  • Raza, S., Fransson, L., and Hult, K. 2001. Protein Sci., 10: 329–338.

    Article  CAS  Google Scholar 

  • Rubio, C., Latxague, L., Deleris, G., and Coulon, D. 2001. J. Biotechnol., 92: 61–66.

    Article  CAS  Google Scholar 

  • Sabri, A., Bare, G., Jacques, P., Jabrane, A., Ongena, M. Heugen, J.C., Van Devreese, B., and Thonart, P. 2001. J. Biol. Chem., 276: 12691–12696.

    Article  CAS  Google Scholar 

  • Saluja, P. and Prasad, G.S. (unpublished results)

    Google Scholar 

  • Sato, N. and Murata, N. 1980. Biochim. Biophys. Acta., 619: 353–366.

    CAS  Google Scholar 

  • Sato, N., Murata, N., Miura, Y., and Ueta, N. 1979. Biochim. Biophys. Acta., 572: 19–28.

    CAS  Google Scholar 

  • Scorzetti, G., Fell, J. W., Fonseca, A., and Statzell-Tallman, A. 2002. FEMS Yeast Res., 2: 495–517.

    CAS  Google Scholar 

  • Scorzetti, G., Petrescu, I., Yarrow, D., and Fell, J.W. 2000. Antonie van Leeuwenhoek 77: 153–157.

    Article  CAS  Google Scholar 

  • Seiburth, J. McN. 1979. Sea Microbes. Oxford University Press, New York.

    Google Scholar 

  • Shivaji, S. 2005. In: Satyanarayana T. Johri B.N. (eds.), Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd., New Delhi, pp. 3–24.

    Google Scholar 

  • Shivaji, S., Gupta, P., Chaturvedi, P., Suresh, K., and Delille, D. 2005a. Int. J. Syst. Evol. Microbiol., 55: 1083–1088.

    Article  CAS  Google Scholar 

  • Shivaji, S., Kiran, M.D., and Chintalapati, S. 2007. In: Gerday C. Glansdorff N. (eds.), Physiology and biochemistry of extremophiles, ASM Press, Washington, pp. 194–207.

    Google Scholar 

  • Shivaji, S., Reddy, G.S.N., Aduri, R.P., Kutty, R., and Ravenschlag, K. 2005b. Cell Mol. Biol., 50: 525–536.

    Google Scholar 

  • Shivaji, S., Reddy, G.S.N., Raghavan, P. U. M., Sarita, N.B., and Delille, D. 2004. Syst. Appl. Microbiol., 27: 628–635.

    Article  CAS  Google Scholar 

  • Shivaji, S., Reddy, G.S.N., Suresh, K., Gupta, P., Chintalapati, S., Schumann, P., Stackebrandt, E., and Matsumoto, G. 2005c. Int. J. Syst. Evol. Microbiol., 55: 757–762.

    Article  CAS  Google Scholar 

  • Silver, S.A. and Sinclair, N.A. 1979. Mycopathologia, 67: 59–64.

    Article  Google Scholar 

  • Silver, S.A., Yall, I., and Sinclair, N.A. 1977. J. Bacteriol., 132: 676–680.

    CAS  Google Scholar 

  • Smith, R.C., Prezelin, B.B., and Baker, K.S. et al. 1992. Science 255: 952–959.

    Article  CAS  Google Scholar 

  • Suen, W.C., Zhang, N., Xiao, L., Madison, V., and Zaks, A. 2004. Protein Eng. Des. Sel., 17: 133–140.

    Article  CAS  Google Scholar 

  • Sugita, T., Takashima, M., Ikeda, R., Nakase, T., and Shinoda, T. 2000. J. Clin. Microbiol., 38: 1468–1471.

    CAS  Google Scholar 

  • Summerbell, R.C. 1983. Can. J. Bot., 61: 1402–1410.

    Google Scholar 

  • Takashima, M., Sugita, T., Shinoda, T., and Nakase, T. 2003. Int. J. Syst. Evol. Microbiol., 53: 1187–1194.

    Article  CAS  Google Scholar 

  • Thomas-Hall, S. and Watson, K. 2002. Int. J. Syst. Evol. Microbiol., 52: 1033–1038.

    Article  CAS  Google Scholar 

  • Thomas-Hall, S., Watson, K., Scorzetti, G. 2002. Int. J. Syst. Evol. Microbiol., 52: 2303–2308.

    Article  CAS  Google Scholar 

  • Tsimako, M., Guffogg, S., Thomas-Hall, S., and Watson, K. 2002. Redox Rep., 7: 312–314.

    Article  Google Scholar 

  • Turkiewicz, M., Pazgier, M., Kalinowska, H., and Bielecki, S. 2003. Extremophiles, 7: 435–442.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme 2004. Industry involvement in Antarctic bioprospecting. Prepared by United Nations University Institute of Advanced Studies, Tokyo, Japan.

    Google Scholar 

  • van Uden, N. 1984. Adv. Microb. Physiol., 25: 195–251.

    Google Scholar 

  • Vincent, C.F. 1988. Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge:p. 303.

    Google Scholar 

  • Vishniac, H.S. 1987. In: de Hoog G.S., Smith M.T., Weijman A.C.M. (eds.), Proceedings of an international symposium on the perspectives of taxonomy, ecology and phylogeny of yeasts and yeast-like fungi. CBS, Delft; Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Vishniac, H.S.1985a. Int. J. Syst. Bacteriol., 35:119–122.

    CAS  Google Scholar 

  • Vishniac, H.S. 1985b. Mycologia, 77: 149–153.

    Article  CAS  Google Scholar 

  • Vishniac, H.S. 1995. Microbial Ecol., 30: 309–320.

    Article  Google Scholar 

  • Vishniac, H.S. 1996. Biodivers. Conserv., 5: 1365–1378.

    Article  Google Scholar 

  • Vishniac, H.S. 1999. In: Seckbach J. (ed.), Enigmatic microorganisms and life in extreme environ ments, Kluwer Academic Publishers, The Netherlands. pp. 317–324.

    Google Scholar 

  • Vishniac, H.S. and Baharaeen, S. 1982. 32: 437–445.

    Google Scholar 

  • Vishniac, H.S. and Hempfling, W.P. 1979a. Int. J. System. Bacteriol., 29: 153–158.

    Article  Google Scholar 

  • Vishniac, H.S. and Hempfling, W.P. 1979b. J. Gen. Microbiol., 112: 301–314.

    Google Scholar 

  • Vishniac, H.S. and Kurtzman, C.P. 1992. Int. J. Syst. Bacteriol., 42: 547–553.

    Google Scholar 

  • Vishniac, H.S., and Onofri, S. 2003. Antonie Van Leeuwenhoek, 83: 231–233.

    Article  CAS  Google Scholar 

  • Vishniac, V.W. and Mainzer, S.E. 1972. Antarct J. US, 7: 88–89.

    Google Scholar 

  • Wada, H. and Murata, N. 1990. Plant Physiol., 92: 1062–1069.

    Article  CAS  Google Scholar 

  • Watson, K. 1987. Rose, A.H. and Harrison, J.S. (eds.), The yeasts, In: 2nd edn., vol.2, Academic Press, London, UK. pp. 41–47.

    Google Scholar 

  • Wynn-Williams, D.D. 1990. Adv. Microbial. Ecol., 11: 71–146.

    Google Scholar 

  • Xin, M.X. and Zhou, P.J. 2007. J. Zhejiang Univ. Sci. B, 8: 260–265.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Shivaji, S., Prasad, G.S. (2009). Antarctic Yeasts: Biodiversity and Potential Applications. In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_1

Download citation

Publish with us

Policies and ethics