Skip to main content

Computational Modeling of Two-Phase Transport in Portable and Micro Fuel Cells

  • Conference paper
Mini-Micro Fuel Cells

The direct methanol fuel cell (DMFC) is considered a leading contender for next-generation portable and micro power sources, offering a combination of simplicity, robustness and high energy density due to the use of liquid methanol. The basic principles of a DMFC can be found in the literature and thus are not repeated here. In order to compete with lithium-ion batteries, a portable DMFC system must overcome several key technical challenges: (1) low rate of methanol oxidation kinetics, (2) methanol crossover through the polymer membrane, (3) water crossover from the anode to cathode, and (4) thermal management. While new materials are being pursued to solve these problems, innovative designs can also be developed with the materials presently available. As a result, there is an urgent need for understanding, prediction, and optimization of various interactive transport and electrochemical processes that occur in portable DMFCs.

Much DMFC research in the past has focused upon the first two issues, methanol oxidation kinetics and methanol crossover, by studying electrocatalysis and electrolyte membrane materials. The more recent interest in small-scale DMFC systems for application to portable and micro power entails a unique design regime under lower temperatures and ambient pressure as well as a better understanding of methanol, water and heat transport. For this purpose, visualization of two-phase flow in the DMFC anode was carried out by Argyropoulos et al. Lu and Wang.

In tandem with experimental efforts, mathematical modeling of DMFCs has received much attention with the goal of having a design tool to design and optimize cell structures under a myriad of operating conditions and form factors. Focusing on either one or two dimensions, early DMFC modeling works were developed to study the mass transport phenomena, electro-chemical processes, and their interactions. However, the two phase effects, recently found to be of paramount importance to understand DMFC behaviors, were not considered in these earlier models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Y. Wang, Fundamental models for fuel cell engineering, Chem. Rev., 104, 4727-4766 (2004).

    Article  Google Scholar 

  2. G. Q. Lu, F. Q. Liu, and C. Y. Wang, Water transport through Nafion 112 membrane in DMFCs, Electrochem. Solid-State Lett., 8, A1-A4 (2005).

    Article  Google Scholar 

  3. F. Q. Liu, G. Q. Lu, and C. Y. Wang, Low crossover of methanol and water through thin membranes in direct methanol fuel cells, J. Electrochem. Soc., 153, A543-A553 (2006).

    Article  Google Scholar 

  4. G. T. Burstein, C. J. Barnett, A. R. Kucernak, and K. R. Williams, Aspects of the anodic oxidation of methanol, Catal. Today, 38, 425-437 (1997).

    Article  Google Scholar 

  5. S. Wasmus and A. Kuver, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem., 461, 14-31 (1999).

    Article  Google Scholar 

  6. A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today, 38, 445-457 (1997).

    Article  Google Scholar 

  7. H. N. Dinh, X. Ren, F. H. Garzon, P. Zelenay, and S. Gottesfeld, Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces, J. Electroanal. Chem., 491, 222-233 (2000).

    Article  Google Scholar 

  8. L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, and E. S. Smotkin, Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells, Electrochim Acta, 43, 3657-3663 (1998).

    Article  Google Scholar 

  9. A. S. Arico, P. Creti, E. Modica, G. Monforte, V. Baglio, and V. Antonucci, Investigation of direct methanol fuel cells based on unsupported Pt-Ru anode catalysts with different chemical properties, Electrochim. Acta, 45, 4319-4328 (2000).

    Article  Google Scholar 

  10. D. Chu and R. Jiang, Novel electrocatalysts for direct methanol fuel cells, Solid State Ionics, 148, 591-599 (2002).

    Article  Google Scholar 

  11. S. R. Narayanan, H. Frank, B. Jeffries-Nakamura, M. Smart, W. Chun, G. Halpert, J. Kosek, and C. Cropley, in: Proton Conducting Membrane Fuel Cells I, edited by S. Gottesfeld, G. Halpert, and A. R. Landgrebe (PV 95-23, 278, The Electrochem. Soc. Proc. Series, Pennington, NJ 1995).

    Google Scholar 

  12. X. Ren, T. A. Zawodzinski Jr., F. Uribe, H. Dai, and S. Gottesfeld, in: Proton Conducting Membrane Fuel Cells I, edited by S. Gottesfeld, G. Halpert, and A. R. Landgrebe (PV 95-23, 278, The Electrochem. Soc. Proc. Series, Pennington, NJ 1995).

    Google Scholar 

  13. J. -T. Wang, S. Wasmus, and R. F. Savinell, Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell, J. Electrochem. Soc., 143, 1233-1239 (1996).

    Article  Google Scholar 

  14. S. Hikita, K. Yamane, and Y. Nakajima, Measurement of methanol crossover in direct methanol fuel cell, JSAE Rev, 22, 151-156 (2000).

    Article  Google Scholar 

  15. S. C. Kelly, G. A. Deluga, and W. H. Smyrl, A miniature methanol/air polymer electrolyte fuel cell, Electrochem. Solid-State Lett., 3, 407-409 (2000).

    Article  Google Scholar 

  16. G. Q. Lu, C. Y. Wang, T. J. Yen, and X. Zhang, Development and characterization of a silicon-based micro direct methanol fuel cell, Electrochim. Acta, 49, 821-828 (2004).

    Article  Google Scholar 

  17. P. Argyropoulos, K. Scott, and W. M. Taama, Gas evolution and power performance in direct methanol fuel cells, J. Appl. Electrochem., 29, 663-671 (1999).

    Article  Google Scholar 

  18. G. Lu and C. Y. Wang, Electrochemical and flow characterization of a direct methanol fuel cell, J. Power Sources, 134, 33-40 (2004).

    Article  MathSciNet  Google Scholar 

  19. J. Wang and R. F. Savinell, in: Electrode Materials and Processes for Energy Conversion and Storage, S. Srinivasan, D. D. Macdonald, and A. C. Khandkar (PV 94-23, 326, The Electrochem. Soc. Proc. Series, Pennington, NJ 1994).

    Google Scholar 

  20. S. F. Baxter, V. S. Battaglia, and R. E. White, Methanol fuel cell model: anode, J. Electrochem. Soc., 146, 437-447 (1999).

    Article  Google Scholar 

  21. A. A. Kulikovsky, J. Divisek, and A. A. Kornyshev, Two-dimensional simulation of direct methanol fuel cell. A new (embedded) type of current collector, J. Electrochem. Soc., 147, 953-959 (2000).

    Article  Google Scholar 

  22. A. A. Kulikovsky, Two-dimensional numerical modelling of a direct methanol fuel cell, J. Appl. Electrochem., 30, 1005-1014 (2000).

    Article  Google Scholar 

  23. K. Scott, P. Argyropoulos, and K. Sundmacher, A model for the liquid feed direct methanol fuel cell, J. Electroanal. Chem., 477, 97-110 (1999).

    Article  Google Scholar 

  24. P. Argyropoulos, K. Scott, and W. M. Taama, Hydrodynamic modelling of direct methanol liquid feed fuel cell stacks, J. Appl. Electrochem., 30, 899-913 (2000).

    Article  Google Scholar 

  25. Z. H. Wang, C. Y. Wang, and K. S. Chen, Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells, J. Power Sources, 94, 40-50 (2001).

    Article  Google Scholar 

  26. C. Y. Wang and P. Cheng, Multiphase flow and heat transfer in porous media, Adv. Heat Transfer, 30, 93-196 (1997).

    Google Scholar 

  27. Z. H. Wang and C. Y. Wang, Mathematical modeling of liquid-feed direct methanol fuel cells, J. Electrochem. Soc., 150, A508-A519 (2003).

    Article  Google Scholar 

  28. W. Liu and C. Y. Wang, Three-dimensional simulations of liquid feed direct methanol fuel cells, J Electrochem. Soc., 154, B352-B361 (2007).

    Article  Google Scholar 

  29. J. Yuan and B. Sunden, Analysis of intermediate temperature solid oxide fuel cell transport processes and performance, J. Heat Transfer 127, 1380-1390 (2005).

    Article  Google Scholar 

  30. V. V. Kharton, F. M. B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics 174, 135-149 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Wang, CY. (2008). Computational Modeling of Two-Phase Transport in Portable and Micro Fuel Cells. In: Kakaç, S., Pramuanjaroenkij, A., Vasiliev, L. (eds) Mini-Micro Fuel Cells. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8295-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8295-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8293-1

  • Online ISBN: 978-1-4020-8295-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics