Skip to main content

Regulation of Melanoma Progression by the Tumor Microenvironment: The Roles of PAR-1 and PAFR

  • Chapter
Regulation of Gene Expression in the Tumor Environment

Part of the book series: TTME ((TTME,volume 2))

The interaction of tumor cells and the host stroma (microenvironment) is essential for tumor progression and metastasis. The melanoma tumor microenvironment has emerged within the last decade as a significant player in melanoma progression from the radial growth phase to the vertical growth phase by providing the necessary elements for growth, invasion and survival. Two receptors involved in this transition that are not only activated by factors from the tumor microenvironment but also in turn secrete factors into the microenvironment are the Protease Activated Receptor 1 (PAR-1) and the Platelet Activating Factor Receptor (PAFR). Thrombin, which is abundant in the microenvironment milieu, activates PAR-1 causing cell signaling via G-proteins resulting in upregulation and secretion of gene products involved in adhesion (integrins), invasion (MMP-2) and angiogenesis (IL-8, VEGF, PDGF, bFGF). PAF, which is secreted by platelets, macrophages, neutrophils, endothelial cells and keratinocytes within the tumor microenvironment, will activate PAFR and signal through p38 MAPK to phosphorylate the CREB/ATF-1 transcription factors. Phosphorylation of CREB/ATF-1 results in overexpression and secretion of MMP-2 and MT1-MMP. Since only metastatic melanoma cells express activated CREB/ATF-1, we propose that they are better equipped to respond to PAF than their non-metastatic counterparts. These two G-protein coupled receptors that play major roles in melanoma progression highlight the crucial interactions between the tumor microenvironment and melanoma cells in the acquisition of the metastatic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, J.T., Herlyn, M., Microenvironmental influences in melanoma progression. J Cell Biochem 101: 862–872, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Postovit, L.M., Seftor, E.A., Seftor, R.E., Hendrix, M.J., Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res 66: 7833–7836, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Melnikova, V., Bar-Eli, M., Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 26: 359–371, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Hsu, M.Y., Meier, F., Herlyn, M., Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70: 522–536, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Tellez, C., Bar-Eli, M., Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 22: 3130–3137, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Ruf, W., Tissue factor and PAR signaling in tumor progression. Thromb Res 120(Suppl 2): S7–S12, 2007.

    Article  Google Scholar 

  7. Bromberg, M.E., Konigsberg, W.H., Madison, J.F., Pawashe, A., Garen, A., Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation. Proc Natl Acad Sci USA 92: 8205–8209, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Fischer, E.G., Ruf, W., Mueller, B.M., Tissue factor-initiated thrombin generation activates the signaling thrombin receptor on malignant melanoma cells. Cancer Res 55: 1629–1632, 1995.

    CAS  PubMed  Google Scholar 

  9. Nierodzik, M.L., Bain, R.M., Liu, L.X., Shivji, M., Takeshita, K., Karpatkin, S., Presence of the seven transmembrane thrombin receptor on human tumour cells: effect of activation on tumour adhesion to platelets and tumor tyrosine phosphorylation. Br J Haematol 92: 452–457, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Haralabopoulos, G.C., Grant, D.S., Kleinman, H.K., Maragoudakis, M.E., Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol 273: C239–C245, 1997.

    CAS  PubMed  Google Scholar 

  11. Shimizu, S., Gabazza, E.C., Hayashi, T., Ido, M., Adachi, Y., Suzuki, K., Thrombin stimulates the expression of PDGF in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 279: L503–L510, 2000.

    CAS  PubMed  Google Scholar 

  12. Even-Ram, S.C., Maoz, M., Pokroy, E., Reich, R., Katz, B.Z., Gutwein, P., Altevogt, P., Bar-Shavit, R., Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 276: 10952–10962, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Wojtukiewicz, M.Z., Tang, D.G., Nelson, K.K., Walz, D.A., Diglio, C.A., Honn, K.V., Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thromb Res 68: 233–245, 1992.

    Article  CAS  PubMed  Google Scholar 

  14. Senger, D.R., Ledbetter, S.R., Claffey, K.P., Papadopoulos-Sergiou, A., Peruzzi, C.A., Detmar, M., Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149: 293–305, 1996.

    CAS  PubMed  Google Scholar 

  15. Zucker, S., Conner, C., DiMassmo, B.I., Ende, H., Drews, M., Seiki, M., Bahou, W.F., Thrombin induces the activation of progelatinase A in vascular endothelial cells: physiologic regulation of angiogenesis. J Biol Chem 270: 23730–23738, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Ueno, A., Murakami, K., Yamanouchi, K., Watanabe, M., Kondo, T., Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 88: 76–81, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Y.Q., Li, J.J., Hu, L., Lee, M., Karpatkin, S., Thrombin induces increased expression and secretion of VEGF from human FS4 fibroblasts, DU145 prostate cells and CHRF megakaryocytes. Thromb Haemost 86: 1094–1098, 2001.

    CAS  PubMed  Google Scholar 

  18. Cucina, A., Borrelli, V., Di Carlo, A., Pagliei, S., Corvino, V., Santoro-D’Angelo, L., Cavallaro, A., Sterpetti, A.V., Thrombin induces production of growth factors from aortic smooth muscle cells. J Surg Res 82: 61–66, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien, P.J., Molino, M., Kahn, M., Brass, L.F., Protease activated receptors: theme and variations. Oncogene 20: 1570–1581, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Ruf, W., Mueller, B.M., Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1): 61–68, 2006.

    Google Scholar 

  21. Hansen, K.K., Saifeddine, M., Hollenberg, M.D., Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology 112: 183–190, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., Reich, R., Vlodavsky, I., Bar-Shavit, R., Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4: 909–914, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Henrikson, K.P., Salazar, S.L., Fenton, J.W., II, Pentecost, B.T., Role of thrombin receptor in breast cancer invasiveness. Br J Cancer 79: 401–406, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Rudroff, C., Schafberg, H., Nowak, G., Weinel, R., Scheele, J., Kaufmann, R., Characterization of functional thrombin receptors in human pancreatic tumor cells (MIA PACA-2). Pancreas 16: 189–194, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Wojtukiewicz, M.Z., Tang, D.G., Ben-Josef, E., Renaud, C., Walz, D.A., Honn, K.V., Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res 55: 698–704, 1995.

    CAS  PubMed  Google Scholar 

  26. Kaushal, V., Kohli, M., Dennis, R.A., Siegel, E.R., Chiles, W.W., Mukunyadzi, P., Thrombin receptor expression is upregulated in prostate cancer. Prostate 66: 273–282, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., Kuliopulos, A., PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Tellez, C., McCarty, M., Ruiz, M., Bar-Eli, M., Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. J Biol Chem 278: 46632–46642, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Massi, D., Naldini, A., Ardinghi, C., Carraro, F., Franchi, A., Paglierani, M., Tarantini, F., Ketabchi, S., Cirino, G., Hollenberg, M.D., Geppetti, P., Santucci, M., Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Hum Pathol 36: 676–685, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Tellez, C.S., Davis, D.W., Prieto, V.G., Gershenwald, J.E., Johnson, M.M., McCarty, M.F., Bar-Eli, M., Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2alpha and protease-activated receptor-1 expression during melanoma progression. J Invest Dermatol 127: 387–393, 2007.

    Article  CAS  PubMed  Google Scholar 

  31. Balkwill, F., Mantovani, A., Inflammation and cancer: back to Virchow? Lancet 357: 539–545, 2001.

    Google Scholar 

  32. Coussens, L.M., Werb, Z., Inflammation and cancer. Nature 420: 860–867, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani, A., Cancer: inflammation by remote control. Nature 435: 752–753, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., Ben-Neriah, Y., NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466, 2004.

    Article  CAS  PubMed  Google Scholar 

  35. Coffer, P.J., Schweizer, R.C., Dubois, G.R., Maikoe, T., Lammers, J.W., Koenderman, L., Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5. Blood 91: 2547–2557, 1998.

    CAS  PubMed  Google Scholar 

  36. Franklin, R.A., Mazer, B., Sawami, H., Mills, G.B., Terada, N., Lucas, J.J., Gelfand, E.W., Platelet-activating factor triggers the phosphorylation and activation of MAP-2 kinase and S6 peptide kinase activity in human B cell lines. J Immunol 151: 1802–1810, 1993.

    CAS  PubMed  Google Scholar 

  37. Honda, Z., Takano, T., Gotoh, Y., Nishida, E., Ito, K., Shimizu, T., Transfected platelet-activating factor receptor activates mitogen-activated protein (MAP) kinase and MAP kinase kinase in Chinese hamster ovary cells. J Biol Chem 269: 2307–2315, 1994.

    CAS  PubMed  Google Scholar 

  38. Ishii, S., Nagase, T., Shimizu, T., Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat 68–69: 599–609, 2002.

    Article  Google Scholar 

  39. Melnikova, V.O., Mourad-Zeidan, A.A., Lev, D.C., Bar-Eli, M., Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem 281: 2911–2922, 2006.

    Article  CAS  PubMed  Google Scholar 

  40. Landis, M., Yi, Q., Hyatt, A.M., Travers, A.R., Lewis, D.A., Travers, J.B., Involvement of P38 MAP kinase in the augmentation of UVB-mediated apoptosis via the epidermal platelet-activating factor receptor. Arch Dermatol Res 299: 263–266, 2007.

    Article  CAS  PubMed  Google Scholar 

  41. Nick, J.A., Avdi, N.J., Young, S.K., Knall, C., Gerwins, P., Johnson, G.L., Worthen, G.S., Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest 99: 975–986, 1997.

    Article  CAS  PubMed  Google Scholar 

  42. Ishii, S., Nagase, T., Tashiro, F., Ikuta, K., Sato, S., Waga, I., Kume, K., Miyazaki, J., Shimizu, T., Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor. Embo J 16: 133–142, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Sato, S., Kume, K., Ito, C., Ishii, S., Shimizu, T., Accelerated proliferation of epidermal keratinocytes by the transgenic expression of the platelet-activating factor receptor. Arch Dermatol Res 291: 614–621, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Travers, J.B., Huff, J.C., Rola-Pleszczynski, M., Gelfand, E.W., Morelli, J.G., Murphy, R.C., Identification of functional platelet-activating factor receptors on human keratinocytes. J Invest Dermatol 105: 816–823, 1995.

    Article  CAS  PubMed  Google Scholar 

  45. Darst, M., Al-Hassani, M., Li, T., Yi, Q., Travers, J.M., Lewis, D.A., Travers, J.B., Augmentation of chemotherapy-induced cytokine production by expression of the platelet-activating factor receptor in a human epithelial carcinoma cell line. J Immunol 172: 6330–6335, 2004.

    CAS  PubMed  Google Scholar 

  46. Rutberg, S.E., Goldstein, I.M., Yang, Y.M., Stackpole, C.W., Ronai, Z., Expression and transcriptional activity of AP-1, CRE, and URE binding proteins in B16 mouse melanoma subclones. Mol Carcinog 10: 82–87, 1994.

    Article  CAS  PubMed  Google Scholar 

  47. Axelrad, T.W., Deo, D.D., Ottino, P., Van Kirk, J., Bazan, N.G., Bazan, H.E., Hunt, J.D., Platelet-activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration. Faseb J 18: 568–570, 2004.

    CAS  PubMed  Google Scholar 

  48. van Kempen, L.C., van Muijen, G.N., Ruiter, D.J., Stromal responses in human primary melanoma of the skin. Front Biosci 10: 2922–2931, 2005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Villares, G.J., Bar-Eli, M. (2008). Regulation of Melanoma Progression by the Tumor Microenvironment: The Roles of PAR-1 and PAFR. In: Bar-Eli, M. (eds) Regulation of Gene Expression in the Tumor Environment. TTME, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8341-9_1

Download citation

Publish with us

Policies and ethics