Skip to main content

Arbuscular Mycorrhizal Fungi Communities in Major Intensive North American Grain Productions

  • Chapter
Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

With population increase, urban sprawl on some of the best agricultural soils and the interest for biofuels, serious pressures have been created on grain and oilseeds production in North America. Fertilizers are the main expense in intensive agricultural management practices. P fertilization is often closely related with soil degradation and contamination of surface water, causing eutrophication and accumulation of blue-green algae in certain locations of Canada. Arbuscular mycorrhizal (AM) symbioses have been shown to benefit plant growth in large part due to the very extensive hyphal network development in soil, exploiting nutrients more efficiently and improving plant uptake. AM symbiosis also increases resistance to stress and reduces disease incidence, representing a key solution in sustainable agriculture. Appropriate management of mycorrhizae in agriculture should allow a substantial reduction in chemical use and production costs. This chapter will review the effects of various fertilization practices on AMF community structure and crop productivity in major North American grain productions (i.e., corn, soybean, wheat, barley), and their reaction to other common management practices (i.e., tillage, rotation, pesticide use).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, M.E., and Abdel-Fattah, G.M., 2000, Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 10: 29-35.

    Google Scholar 

  • Aliasgarzad, N., Neyshabouri, M.R., and Salimi, G., 2006, Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 61: S324-S328.

    Google Scholar 

  • Al-Karaki, G., McMichael, B., and Zak, J., 2004, Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263-269.

    PubMed  Google Scholar 

  • Al-Karaki, G.N., 1998, Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8: 41-45.

    Google Scholar 

  • Al-Karaki, G.N., and Al-Omoush, M., 2002, Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr. 25: 873-883.

    CAS  Google Scholar 

  • Alloush, G.A., and Clark, R.B., 2001, Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Com. Soil Sci. Plant Anal. 32: 231-254.

    CAS  Google Scholar 

  • Andrade, G., Mihara, K.L., Linderman, R.G., and Bethlenfalvay, G.J., 1997, Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192: 71-79.

    CAS  Google Scholar 

  • Antunes, P.M., de Varennes, A., Zhang, T., and Goss, M.J., 2006, The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J. Agr. Crop Sci. 192: 373-378.

    Google Scholar 

  • Artursson, V., Finlay, R.D., and Jansson, J.K., 2006, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8: 1-10.

    CAS  PubMed  Google Scholar 

  • Augé, R.M., and Stodola, A.J.W., 1990, An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol. 115: 285-295.

    Google Scholar 

  • Azcón, R., Ruiz-Lozano, J., and Rodriguez, R., 2001, Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (N-15) under increasing N supply to the soil. Can. J. Bot. 79: 1175-1180.

    Google Scholar 

  • Babana, A.H., and Antoun, H., 2006, Effect of Tilemsi phosphate rock-solubilizing micro-organisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287: 51-58.

    CAS  Google Scholar 

  • Bagayoko, M., George, E., Romheld, V., and Buerkert, A.B., 2000, Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J. Agric. Sci. 135: 399-407.

    Google Scholar 

  • Baon, J.B., Smith, S.E., and Alston, A.M., 1993, Mycorrhizal responses of barley cultivars differing in P-efficiency. Plant Soil 157: 97-105.

    Google Scholar 

  • Barea, J.M., Azcón-Aguilar, C., and Azcón, R., 1987, Vesicular-arbuscular improve both symbiotic N2 fixation and N uptake from soil as assessed with a N-15 technique under field conditions. New Phytol. 106: 717-726.

    CAS  Google Scholar 

  • Barea, J.M., Azcón, R., and Azcón-Aguilar, C., 2002, Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343-351.

    CAS  PubMed  Google Scholar 

  • Baudoin, E., Benizri, E., and Guckert, A., 2003, Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35: 1183-1192.

    CAS  Google Scholar 

  • Bazzoffi, P., Pellegrini, S., Rocchini, A., Morandi, M., and Grasselli, O., 1998, The effect of urban refuse compost and different tractors tires on soil physical properties, soil erosion and maize yield. Soil Til. Res. 48: 275-286.

    Google Scholar 

  • Bedini, S., Avio, L., Argese, E., and Giovannetti, M., 2007, Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric. Ecos. Environ. 120: 463-466.

    CAS  Google Scholar 

  • Bethlenfalvay, G.J., Brown, M.S., Ames, R.N., and Thomas, R.S., 1988, Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant. 72: 565-571.

    CAS  Google Scholar 

  • Bever, J.D., Morton, J.B., Antonovics, J., and Schultz, P.A., 1996, Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J. Ecol. 84: 71-82.

    Google Scholar 

  • Biró, B., Koves-Pechy, K., Voros, I., Takacs, T., Eggenberg, P., and Strasser, R.J., 2000, Inter-relations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa at sterile, AMF-free or normal soil conditions. Appl. Soil Ecol. 15: 159-168.

    Google Scholar 

  • Blaszkowski, J., 1993, Comparative studies of the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol. 28: 93-140.

    Google Scholar 

  • Boddington, C.L., and Dodd, J.C., 2000, The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218: 137-144.

    CAS  Google Scholar 

  • Bødker, L., Kjøller, R., Kristensen, K., and Rosendahl, S., 2002, Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12: 7-12.

    PubMed  Google Scholar 

  • Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R., and Chaparzadeh, N., 2007, Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci. Hort. 114: 11-15.

    Google Scholar 

  • Borowicz, V.A., 2001, Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82: 3057-3068.

    Google Scholar 

  • Boswell, E.P., Koide, R.T., Shumway, D.L., and Addy, H.D., 1998, Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecos. Environ. 67: 55-65.

    Google Scholar 

  • Boyetchko, S.M., and Tewari, J.P., 1988, The effect of VA mycorrhizal fungi on infection by Bipolaris sorokiniana in barley. Can. J. Plant Pathol. 10: 361.

    Google Scholar 

  • Boyetchko, S.M., and Tewari, J.P., 1990, Effect of phosphorus and VA mycorrhizal fungi on common root rot of barley. Innovation and integration. Proceedings of the 8th North American Conference on Mycorrhizae, Sept. 5-8, Jackson, Wyoming.

    Google Scholar 

  • Brady, N.C., and Weil, R.R., 2002. The nature and properties of soils, Prentice Hall, New Jersey, pp. 960.

    Google Scholar 

  • Budi, S.W., van Tuinen, D., Martinotti, G., and Gianinazzi, S., 1999, Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65: 5148-5150.

    CAS  PubMed  Google Scholar 

  • Calvet, C., Barea, J.M., and Pera, J., 1992, In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24: 775-780.

    Google Scholar 

  • Carter, M.R., and Campbell, A.J., 2006, Influence of tillage and liquid swine manure on productivity of a soybean-barley rotation and some properties of a fine sandy loam in Prince Edward Island. Can. J. Soil Sci. 86: 741-748.

    Google Scholar 

  • Castillo, C.G., Rubio, R., Rouanet, J.L., and Borie, F., 2006, Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an ultisol. Biol. Fert. Soils 43: 83-92.

    Google Scholar 

  • Christensen, H., and Jakobsen, I., 1993, Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L). Biol. Fert. Soils 15: 253-258.

    Google Scholar 

  • Clark, R.B., 1997, Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192: 15-22.

    CAS  Google Scholar 

  • Clark, R.B., and Zeto, S.K., 2000, Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23: 867-902.

    CAS  Google Scholar 

  • Cousins, J.R., Hope, D., Gries, C., and Stutz, J.C., 2003, Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 13: 319-326.

    PubMed  Google Scholar 

  • Cruz, C., Green, J.J., Watson, C.A., Wilson, F., and Martins-Loucao, M.A., 2004, Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14: 177-184.

    CAS  PubMed  Google Scholar 

  • Da Silva, A.E., and Gabelman, W.H., 1992, Screening maize inbred lines for tolerance to low-P stress condition. Plant Soil 146: 181-187.

    Google Scholar 

  • de Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L., 2005, Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29: 795-811.

    Google Scholar 

  • de Varennes, A., and Goss, M.J., 2007, The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39: 2603-2607.

    Google Scholar 

  • Douds, D.D., and Millner, P., 1999, Biodiversity of arbuscular mycorrhizal fungi in agroeco-systems. Agric. Ecos. Environ. 74: 77-93.

    Google Scholar 

  • Ellis, J.R., Roder, W., and Mason, S.C., 1992, Grain sorghum-soybean rotation and fertilization influence on vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Amer. J. 56: 789-794.

    Google Scholar 

  • Elsen, A., Declerck, S., and De Waele, D., 2001, Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11: 49-51.

    Google Scholar 

  • Feldmann, F., and Boyle, C., 1998, Weed-mediated stability of arbuscular mycorrhizal fungi effectiveness in maize monocultures. J. Appl. Bot. 73: 1-5.

    Google Scholar 

  • Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C.X., and Rengel, Z., 2002, Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi. Com. Soil Sci. Plant Anal. 33: 3825-3836.

    CAS  Google Scholar 

  • Feng, G., Song, Y.C., Li, X.L., and Christie, P., 2003, Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl. Soil Ecol. 22: 139-148.

    Google Scholar 

  • Fidelibus, M.W., Martin, C.A., and Stutz, J.C., 2001, Geographic isolates of Glomus increase root growth and whole-plant transpiration of citrus seedlings grown with high phosphorus. Mycorrhiza 10: 231-236.

    Google Scholar 

  • Filion, M., St-Arnaud, M., and Fortin, J.A., 1999, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141: 525-533.

    Google Scholar 

  • Fontenla, S., Garcia-Romera, I., and Ocampo, J.A., 1999, Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol. Biochem. 31: 1591-1597.

    CAS  Google Scholar 

  • Francis, R., and Read, D.J., 1994, The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159: 11-25.

    Google Scholar 

  • Galvez, L., Douds, D.D., Drinkwater, L.E., and Wagoner, P., 2001, Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228: 299-308.

    CAS  Google Scholar 

  • Garmendia, I., Goicoechea, N., and Aguirreolea, J., 2004, Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biol. Contr. 31: 296-305.

    Google Scholar 

  • Gavito, M.E., and Miller, M.H., 1998, Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 199: 177-186.

    CAS  Google Scholar 

  • Ghazvini, H., and Tekauz, A., 2007, Reactions of Iranian barley accessions to three predominant pathogens in Manitoba. Can. J. Plant Pathol. 29: 69-78.

    Google Scholar 

  • Gosling, P., Hodge, A., Goodlass, G., and Bending, G.D., 2006, Arbuscular mycorrhizal fungi and organic farming. Agric. Ecos. Environ. 113: 17-35.

    Google Scholar 

  • Goss, M.J., and de Varennes, A., 2002, Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol. Biochem. 34: 1167-1173.

    CAS  Google Scholar 

  • Graham, J.H., 2001, What do root pathogens see in mycorrhizas? New Phytol. 149: 357-359.

    Google Scholar 

  • Graham, J.H., and Abbott, L.K., 2000, Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220: 207-218.

    CAS  Google Scholar 

  • Graham, J.H., and Menge, J.A., 1982, Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology 72: 95-98.

    Google Scholar 

  • Gryndler, M., Vosatka, M., Hrselova, H., Catska, V., Chvatalova, I., and Jansa, J., 2002, Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr. 25: 1341-1358.

    CAS  Google Scholar 

  • Hamel, C., 2004, Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can. J. Soil Sci. 84: 383-395.

    CAS  Google Scholar 

  • Hamel, C., Furlan, V., and Smith, D.L., 1992, Mycorrhizal effects on interspecific plant competition and nitrogen transfer in legume grass mixtures. Crop Sci. 32: 991-996.

    CAS  Google Scholar 

  • Hamel, C., Dalpé, Y., Lapierre, C., Simard, R.R., and Smith, D.L., 1994, Composition of the vesicular-arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbance. Agric. Ecos. Environ. 49: 223-231.

    Google Scholar 

  • Hamel, C., Hanson, K., Selles, F., Cruz, A.F., Lemke, R., McConkey, B., and Zentner, R., 2006a, Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38: 2104-2116.

    CAS  Google Scholar 

  • Hamel, C., Vujanovic, V., Jeannotte, R., Liu, A., Nakano, A., and St-Arnaud, M., 2006b, Variation in arbuscular mycorrhizal fungi extraradicular biomass along a climatic gradient in an agricultural zone of Quebec, Canada. 5th International Symbosium on Society Congress, Aug. 4-10, Vienna, Austria.

    Google Scholar 

  • Hao, Z.P., Christie, P., Qin, L., Wang, C.X., and Li, X.L., 2005, Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. J. Plant Nutr. 28: 1961-1974.

    CAS  Google Scholar 

  • Hart, M.M., Reader, R.J., and Klironomos, J.N., 2003, Plant coexistence mediated by arbuscular mycorrhizal fungi. Tren. Ecol. Evol. 18: 418-423.

    Google Scholar 

  • Heffer, P., and Prud’homme, M. (2006). Medium-term outlook for global Fertililizer demand, supply and trade, 2006-2010, summary report presented at the 74th IFA Annual Conference Cape Town, Paris, France, International Fertilizer Industry Association.

    Google Scholar 

  • Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., and Young, J.P.W., 1998, Ploughing up the wood-wide web. Nature 394: 431.

    CAS  PubMed  Google Scholar 

  • Hodge, A., Campbell, C.D., and Fitter, A.H., 2001, An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297-299.

    CAS  PubMed  Google Scholar 

  • Ibijbijen, J., Urquiaga, S., Ismaili, M., Alves, B.J.R., and Boddey, R.M., 1996, Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol. 134: 353-360.

    CAS  Google Scholar 

  • Ilbas, A.I., and Sahin, S., 2005, Glomus fasciculatum inoculation improves soybean production. Acta Agri. Scand. S. B-Soil Plant Sci. 55: 287-292.

    Google Scholar 

  • Imboden, D.M., 1974, Phosphorus model of lake eutrophication. Limnol. Oceanogr. 19: 297-304.

    CAS  Google Scholar 

  • Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I.R., and Frossard, E., 2002, Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12: 225-234.

    CAS  PubMed  Google Scholar 

  • Johnson, N.C., 1993, Can fertilization of soil select less mutualistic mycorrhizae? Ecol. Appl. 3: 749-757.

    Google Scholar 

  • Johnson, N.C., 1998, Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter-implications for reclamation. J. Appl. Ecol. 35: 86-94.

    CAS  Google Scholar 

  • Johnson, N.C., and Pfleger, F.L., 1992. Vesicular-arbuscular mycorrhizae and cultural practices. In: Mycorrhizae in sustainable agriculture., G. J. Bethlenfalvay and R. G. Linderman eds., ASA, CSSA, and SSSA, Madison, WI, 54, pp. 71-99.

    Google Scholar 

  • Johnson, N.C., Tilman, D., and Wedin, D., 1992, Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034-2042.

    Google Scholar 

  • Jordan, N.R., Zhang, J., and Huerd, S., 2000, Arbuscular-mycorrhizal fungi: potential roles in weed management. Weed Res. 40: 397-410.

    Google Scholar 

  • Kabir, Z., and Koide, R.T., 2000, The effect of dandelion or a cover crop on mycorrhiza ino-culum potential, soil aggregation and yield of maize. Agric. Ecos. Environ. 78: 167-174.

    Google Scholar 

  • Kabir, Z., O’Halloran, I.P., and Hamel, C., 1999, Combined effects of soil disturbance and fallowing on plant and fungal components of mycorrhizal corn (Zea mays L.). Soil Biol. Biochem. 31: 307-314.

    CAS  Google Scholar 

  • Kanno, T., Saito, M., Ando, Y., Macedo, M.C.M., Nakamura, T., and Miranda, C.H.B., 2006, Importance of indigenous arbuscular mycorrhiza for growth and phosphorus uptake in tropical forage grasses growing on an acid, infertile soil from the brazilian savannas. Trop. Grassl. 40: 94-101.

    Google Scholar 

  • Karagiannidis, N., and Hadjisavvazinoviadi, S., 1998, The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr. Cycl. Agroecos. 52: 1-7.

    Google Scholar 

  • Karasawa, T., Kasahara, Y., and Takebe, A., 2002, Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol. Biochem. 34: 851-857.

    CAS  Google Scholar 

  • Khalil, S., Loynachan, T.E., and Tabatabai, M.A., 1994, Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron. J. 86: 949-958.

    Google Scholar 

  • Khan, I.A., Ahmad, S., and Ayub, N., 2003, Response of oat (Avena sativa) to inoculation with vesicular arbuscular mycorrhizae (VAM) in the presence of phosphorus. Asian J. Plant Sci. 2: 371-373.

    Google Scholar 

  • Kirchmann, H., and Thorvaldsson, G., 2000, Challenging targets for future agriculture. Eur. J. Agro. 12: 145-161.

    Google Scholar 

  • Klironomos, J.N., McCune, J., Hart, M., and Neville, J., 2000, The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3: 137-141.

    Google Scholar 

  • Lekberg, Y., and Koide, R.T., 2005, Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 168: 189-204.

    CAS  PubMed  Google Scholar 

  • Li, B., Ravnskov, S., Xie, G.L., and Larsen, J., 2007, Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontr. 52: 863-875.

    Google Scholar 

  • Li, H.Y., Smith, S.E., Holloway, R.E., Zhu, Y.G., and Smith, F.A., 2006, Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172: 536-543.

    CAS  PubMed  Google Scholar 

  • Liebman, M., Menalled, F.D., Buhler, D.D., Richard, T.L., Sundberg, D.N., Cambardella, C. A., and Kohler, K.A., 2004, Impacts of composted swine manure on weed and corn nutrient uptake, growth, and seed production. Weed Sci. 52: 365-375.

    CAS  Google Scholar 

  • Linderman, R.G., 1992, Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in sustainable agriculture, G. J. Bethlenfalvay and R. G. Linderman eds., American Society of Agriculture, Madison, WI, Special Publication No. 54, pp. 45-70.

    Google Scholar 

  • Linderman, R.G., and Paulitz, T.C., 1990, Mycorrhizal-rhizobacterial interactions. In: Biological control of soil-born plant pathogens, D. Hornby, R. J. Cook, Y. Heniset al eds., CAB International, Wallingford, UK, pp. 261-283.

    Google Scholar 

  • Lioussanne, L., 2007, Rôles des modifications de la microflore bactérienne et de l’exsudation racinaire de la tomate par la symbiose mycorhizienne dans le biocontrôle sur le Phytophthora nicotianae. Ph.D. thesis, Université de Montréal, pp. 264.

    Google Scholar 

  • Lithourgidis, A.S., Matsi, T., Barbayiannis, N., and Dordas, C.A., 2007, Effect of liquid cattle manure on corn yield, composition, and soil properties. Agron. J. 99: 1041-1047.

    Google Scholar 

  • Liu, A., Hamel, C., Elmi, A., Costa, C., Ma, B., and Smith, D.L., 2002, Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci. 82: 271-278.

    CAS  Google Scholar 

  • Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002, Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.

    CAS  PubMed  Google Scholar 

  • Marler, M.J., Zabinski, C.A., and Callaway, R.M., 1999, Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80: 1180-1186.

    Google Scholar 

  • Marschner, P., and Crowley, D.E., 1996a, Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Soil Biol. Biochem. 28: 869-876.

    CAS  Google Scholar 

  • Marschner, P., and Crowley, D.E., 1996b, Root colonization of mycorrhizal and non- mycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2-79RL. New Phytol. 134: 115-122.

    Google Scholar 

  • Marschner, P., Crowley, D.E., and Higashi, R.M., 1997, Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Plant Soil 189: 11-20.

    CAS  Google Scholar 

  • Matsubara, Y., Ohba, N., and Fukui, H., 2001, Effect of arbuscular mycorrhizal fungus infection on the incidence of fusarium root rot in asparagus seedlings. J. Jap. Soc. Hort. Sci. 70: 202-206.

    Google Scholar 

  • McGonigle, T.P., 1988, A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Func. Ecol. 2: 473-478.

    Google Scholar 

  • Menendez, A.B., Scervino, J.M., and Godeas, A.M., 2001, Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol. Fert. Soils 33: 373-381.

    Google Scholar 

  • Meyer, J.R., and Linderman, R.G., 1986a, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18: 185-190.

    CAS  Google Scholar 

  • Meyer, J.R., and Linderman, R.G., 1986b, Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191-196.

    Google Scholar 

  • Miller, M.H., 2000, Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can. J. Plant Sci. 80: 47-52.

    CAS  Google Scholar 

  • Miller, M.H., McGonigle, T.P., and Addy, H.D., 1995, Functional ecology of vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit. Rev. Biotechnol. 15: 241-255.

    Google Scholar 

  • Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J., and Torabi, H., 2007, Using arbus-cular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol. Biochem. 39: 2014-2026.

    CAS  Google Scholar 

  • Mohammad, A., Mitra, B., and Khan, A.G., 2004, Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric. Ecos. Environ. 103: 245-249.

    Google Scholar 

  • Mozafar, A., Anken, T., Ruh, R., and Frossard, E., 2000, Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron. J. 92: 1117-1124.

    CAS  Google Scholar 

  • Nourinia, A.A., Faghani, E., Rejali, F., Safarnezhad, A., and Abbasi, M., 2007, Evaluation effects of symbiosis of mycorrhiza on yield components and some physiological parameters of barley genotypes under salinity stress. Asian J. Plant Sci. 6: 1108-1112.

    Google Scholar 

  • Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Boller, T., and Wiemken, A., 2003, Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 69: 2816-2824.

    CAS  PubMed  Google Scholar 

  • Oehl, F., Sieverding, E., Mader, P., Dubois, D., Ineichen, K., Boller, T., and Wiemken, A., 2004, Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecol. 138: 574-583.

    Google Scholar 

  • Oehl, F., Sieverding, E., Ineichen, K., Ris, E.A., Boller, T., and Wiemken, A., 2005, Com-munity structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 165: 273-283.

    PubMed  Google Scholar 

  • Omar, S.A., 1998, The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14: 211-218.

    CAS  Google Scholar 

  • Ortas, I., Ortakci, D., and Kaya, Z., 2002, Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Com. Soil Sci. Plant Anal. 33: 259-272.

    CAS  Google Scholar 

  • Ozgonen, H., and Erkilic, A., 2007, Growth enhancement and Phytophthora blight (Phyto-phthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protec. 26: 1682-1688.

    Google Scholar 

  • Pardo, A., Amato, M., and Chiaranda, F.Q., 2000, Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agro. 13: 39-45.

    Google Scholar 

  • Paulitz, T.C., and Linderman, R.G., 1989, Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol. 113: 37-45.

    Google Scholar 

  • Plenchette, C., 1983, Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. Plant Soil 70: 199-209.

    CAS  Google Scholar 

  • Posta, K., Marschner, H., and Römheld, V., 1994, Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5: 119-124.

    CAS  Google Scholar 

  • Powell, C.L., 1981, Inoculation of barley with efficient mycorrhizal fungi stimulates seed yield. Plant Soil 59: 487-489.

    CAS  Google Scholar 

  • Powell, J.R., Gulden, R.H., Hart, M.M., Campbell, R.G., Levy-Booth, D.J., Dunfield, K.E., Pauls, K.P., Swanton, C.J., Trevors, J.T., and Klironomos, J.N., 2007, Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl. Environ. Microbiol. 73: 4365-4367.

    CAS  PubMed  Google Scholar 

  • Quilambo, O.A., Weissenhorn, I., Doddema, H., Kuiper, P.J.C., and Stulen, I., 2005, Arbus-cular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress. J. Plant Nutr. 28: 1645-1662.

    CAS  Google Scholar 

  • Rao, A.V., Tarafdar, J.C., Sharma, S.K., and Aggarwal, R.H., 1995, Influence of cropping systems on soil biochemical properties in an arid rainfed environment. J. Arid Environ 31: 237-244.

    Google Scholar 

  • Read, D.J., Koucheki, H.K., and Hodgson, J., 1976, Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol. 77: 641-653.

    Google Scholar 

  • Rempel, C.B., 1989, Interactions between vesicular-arbuscular mycorrhizae (VAM) and fungal pathogens in wheat. M.Sc. thesis, University of Manitoba, Winnipeg, Canada, pp. 134.

    Google Scholar 

  • Reyes, I., Bernier, L., and Antoun, H., 2002, Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44: 39-48.

    CAS  PubMed  Google Scholar 

  • Rillig, M.C., Lutgen, E.R., Ramsey, P.W., Klironomos, J.N., and Gannon, J.E., 2005, Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiol. 49: 251-259.

    Google Scholar 

  • Rodriguez, H., and Fraga, R., 1999, Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.

    CAS  PubMed  Google Scholar 

  • Rousseau, A., Benhamou, N., Chet, I., and Piché, Y., 1996, Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86: 434-443.

    Google Scholar 

  • Ruiz-Lozano, J.M., and Azcón, R., 2000, Symbiotic efficiency and infectivity of an auto-chthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137-143.

    CAS  Google Scholar 

  • Ruiz-Lozano, J.M., Azcón, R., and Gomez, M., 1995, Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol. 61: 456-460.

    CAS  PubMed  Google Scholar 

  • Russo, A., Felici, C., Toffanin, A., Gotz, M., Collados, C., Barea, J.M., Moenne-Loccoz, Y., Smalla, K., Vanderleyden, J., and Nuti, M., 2005, Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biol. Fert. Soils 41: 301-309.

    Google Scholar 

  • Ryan, M.H., and Angus, J.F., 2003, Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250: 225-239.

    CAS  Google Scholar 

  • Ryan, M.H., and Graham, J.H., 2002, Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244: 263-271.

    CAS  Google Scholar 

  • Ryan, M.H., van Herwaarden, A.F., Angus, J.F., and Kirkegaard, J.A., 2005, Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270: 275-286.

    CAS  Google Scholar 

  • Sala, V.M.R., Freitas, S.D., and da Silveira, A.P.D., 2007, Interaction between arbuscular mycorrhizal fungi and diazotrophic bacterial in wheat plants. Pesq. Agro. Bras. 42: 1593-1600.

    Google Scholar 

  • Saxena, A.K., Rathi, S.K., and Tilak, K., 1997, Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by Bradyrhizobium sp. (vigna) strains 24. Biol. Fert. Soils 24: 175-178.

    CAS  Google Scholar 

  • Scheublin, T.R., Van Logtestijn, R.S.P., and Van der Heijden, M.G.A., 2007, Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 95: 631-638.

    CAS  Google Scholar 

  • Schloter, M., Dilly, O., and Munch, J.C., 2003, Indicators for evaluating soil quality. Agric. Ecos. Environ. 98: 255-262.

    Google Scholar 

  • Schmidt, J.P., Lamb, J.A., Schmitt, M.A., Randall, G.W., Orf, J.H., and Gollany, H.T., 2001, Soybean varietal response to liquid swine manure application. Agron. J. 93: 358-363.

    Google Scholar 

  • Schreiner, R.P., 2007, Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl. Soil Ecol. 36: 205-215.

    Google Scholar 

  • Schwab, S.M., Menge, J.A., and Tinker, P.B., 1991, Regulation of nutrient transfer between host and fungus in vesicular-arbusculare mycorrhizas. New Phytol. 117: 387-398.

    CAS  Google Scholar 

  • Scullion, J., Eason, W.R., and Scott, E.P., 1998, The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil 204: 243-254.

    CAS  Google Scholar 

  • Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S., and van Tuinen, D., 2005, Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71: 6501-6507.

    CAS  PubMed  Google Scholar 

  • Singer, J.W., Kohler, K.A., Liebman, M., Richard, T.L., Cambardella, C.A., and Buhler, D. D., 2004, Tillage and compost affect yield of corn, soybean, and wheat and soil fertility. Agron. J. 96: 531-537.

    Google Scholar 

  • Sjöberg, J., 2005, Arbuscular mycorrhizal fungi: occurrence in Sweden and interaction with a plant pathogenic fungus in barley. Ph.D. thesis, Swedish University of Agricultural Sciences, pp. 53.

    Google Scholar 

  • Smith, S.E., and Read, D.J., 1997. Mycorrhizal symbiosis, 2nd edn., Academic, San Diego, CA/London, pp. 605.

    Google Scholar 

  • Smith, S.E., Smith, F.A., and Jakobsen, I., 2004, Functional diversity in arbuscular mycor-rhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162: 511-524.

    Google Scholar 

  • Sood, S.G., 2003, Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol. Ecol. 45: 219-227.

    Google Scholar 

  • St-Arnaud, M., and Elsen, A., 2005. Interaction or arbuscular-mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: In vitro culture of mycorrhizas, S. Declerck, D.-G. Strullu and J. A. Fortin eds., Springer, Berlin/Heidelberg, Germany, pp. 217-231.

    Google Scholar 

  • St-Arnaud, M., and Vujanovic, V., 2007, Effects of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: in crop production, C. Hamel and C. Plenchette eds., Haworth, New York, pp. 67-122.

    Google Scholar 

  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., and Fortin, J.A., 1995, Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5: 431-438.

    Google Scholar 

  • Subba Rao, N.S., 1985, Effect of combined inoculation of Azospirillum brasilense and vesicular arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil 81: 283-286.

    Google Scholar 

  • Subramanian, K.S., and Charest, C., 1995, Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5: 273-278.

    Google Scholar 

  • Subramanian, K.S., and Charest, C., 1998, Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol. Plant. 102: 285-296.

    CAS  Google Scholar 

  • Subramanian, K.S., and Charest, C., 1999, Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9: 69-75.

    CAS  Google Scholar 

  • Subramanian, K.S., Charest, C., Dwyer, L.M., and Hamilton, R.I., 1995, Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol. 129: 643-650.

    Google Scholar 

  • Subramanian, K.S., Charest, C., Dwyer, L.M., and Hamilton, R.I., 1997, Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Can. J. Bot. 75: 1582-1591.

    CAS  Google Scholar 

  • Talavera, M., Itou, K., and Mizukubo, T., 2001, Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidognidae) and carrot-Pratylenchus penetrans (Tylenchida: Praty-lenchidae) pathosystems. Appl. Entomol. Zool. 36: 387-392.

    Google Scholar 

  • Talukdar, N.C., and Germida, J.J., 1993, Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchewan, Canada. Can. J. Microbiol. 39: 567-575.

    Google Scholar 

  • Tarkalson, D.D., Jolley, V.D., Robbins, C.W., and Terry, R.E., 1998, Mycorrhizal coloni-zation and nutrition of wheat and sweet corn grown in manure-treated and untreated topsoil and subsoil. J. Plant Nutr. 21: 1985-1999.

    CAS  Google Scholar 

  • Tejada, M., and Gonzalez, J.L., 2006, Crushed cotton gin compost on soil biological pro-perties and rice yield. Eur. J. Agro. 25: 22-29.

    Google Scholar 

  • Thygesen, K., Larsen, J., and Bodker, L., 2004, Arbuscular mycorrhizal fungi reduce develop-ment of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen ino-culum. Eur. J. Plant Pathol. 110: 411-419.

    CAS  Google Scholar 

  • Tian, C.Y., Feng, G., Li, X.L., and Zhang, F.S., 2004, Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 26: 143-148.

    Google Scholar 

  • Troeh, Z.I., and Loynachan, T.E., 2003, Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron. J. 95: 224-230.

    Google Scholar 

  • van der Heijden, M.G.A., Wiemken, A., and Sanders, I.R., 2003, Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol. 157: 569-578.

    Google Scholar 

  • Vazquez, M.M., Cesar, S., Azcón, R., and Barea, J.M., 2000, Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272.

    Google Scholar 

  • Vigo, C., Norman, J.R., and Hooker, J.E., 2000, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49: 509-514.

    Google Scholar 

  • Villegas, J., and Fortin, J.A., 2001, Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can. J. Bot. 79: 865-870.

    CAS  Google Scholar 

  • Villegas, J., and Fortin, J.A., 2002, Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 -as nitrogen source. Can. J. Bot. 80: 571-576.

    CAS  Google Scholar 

  • Vogelsang, K.M., Reynolds, H.L., and Bever, J.D., 2006, Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172: 554-562.

    PubMed  Google Scholar 

  • Walley, F.L., and Germida, J.J., 1997, Response of spring wheat (Triticum aestivum) to inter-actions between pseudomonas species and Glomus clarum NT4. Biol. Fert. Soils 24: 365-371.

    Google Scholar 

  • West, H.M., 1996, Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J. Ecol. 84: 429-438.

    Google Scholar 

  • Whitelaw, M.A., 2000, Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agro. 69: 99-151.

    CAS  Google Scholar 

  • Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., and Wong, M.H., 2005, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155-166.

    Google Scholar 

  • Wu, Q.S., and Xia, R.X., 2006, Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 417-425.

    CAS  PubMed  Google Scholar 

  • Xavier, L.J.C., and Germida, J.J., 2002, Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem. 34: 181-188.

    CAS  Google Scholar 

  • Xavier, L.J.C., and Germida, J.J., 2003, Selective interactions between arbuscular mycor-rhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol. Fert. Soils 37: 261-267.

    Google Scholar 

  • Yao, Q., Zhu, H.H., Chen, J.Z., and Christie, P., 2005, Influence of an arbuscular mycorrhizal fungus on competition for phosphorus between sweet orange and a leguminous herb. J. Plant Nutr. 28: 2179-2192.

    CAS  Google Scholar 

  • Zhang, X.H., Zhu, Y.G., Chen, B.D., Lin, A.J., Smith, S.E., and Smith, F.A., 2005, Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J. Plant Nutr. 28: 2065-2077.

    CAS  Google Scholar 

  • Zhang, X.H., Zhu, Y.G., Lin, A.J., Chen, B.D., Smith, S.E., and Smith, F.A., 2006, Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64: 1627-1632.

    CAS  PubMed  Google Scholar 

  • Zhu, Y.G., Smith, S.E., Barritt, A.R., and Smith, F.A., 2001, Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237: 249-255.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Beauregard, M.S., Hamel, C., St.-Arnaud, M. (2008). Arbuscular Mycorrhizal Fungi Communities in Major Intensive North American Grain Productions. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_5

Download citation

Publish with us

Policies and ethics