Skip to main content

Distribution and Biosynthesis of Carotenoids

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Purple bacteria including aerobic photosynthetic bacteria belong to the Proteobacteria, and 75 genera including around 160 species have been described. These bacteria produce around 100 different carotenoids, which are essential for photoprotection and light-harvesting. This chapter summarizes the distribution and biosynthesis of carotenoids in all of the purple bacteria described so far. All of the carotenogenesis genes from Rhodobacter capsulatus, Rhodobacter sphaeroides and Rubrivivax gelatinosus, and some genes from other purple bacteria have been functionally confirmed, and the characteristics of their products have been investigated. When one enzyme of the typical spirilloxanthin pathway is lacking or is present with reduced activity, the carotenoid composition of the bacterium will be expected to change; indeed, the variation of the spirilloxanthin pathways can be explained by this idea. Based on these new findings, two main pathways within purple bacteria have been proposed; the spirilloxanthin pathway (normal spirilloxanthin, unusual spirilloxanthin, spheroidene, and carotenal pathways) and the okenone pathway (okenone and R.g.-keto carotenoid pathways). In addition, carotenoid glucosides and carotenoid glucoside fatty acid esters have also been found in some species. Purple bacteria classified as Alphaproteobacteria and Betaproteobacteria have the spirilloxanthin pathway, while those in the Gammaproteobacteria have either the spirilloxanthin or the okenone pathway depending on genus or species. The aerobic photosynthetic bacteria described so far are classified as Alphaproteobacteria and Betaproteobacteria, and most species have the spirilloxanthin pathway. Furthermore most of these species also have unusual carotenoids including ‘non-photosynthetic’ carotenoids, such as carotenoid sulfates and carotenoic acids, which seem to have no photosynthetic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll

Erb. :

Erythrobacter

Erb-type:

Erythrobacter-type

IPP:

isopentenylpyrophosphate

LH:

light-harvesting

LH1:

light-harvesting 1 complex

LH2:

light-harvesting 2 complex

Rba. :

Rhodobacter

RC:

reaction center

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

Rvi. :

Rubrivivax

References

  • Albrecht M, Ruther A and Sandmann G (1997) Purification and biochemical characterization of a hydroxyneurosporene desaturase involved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides. J Bacteriol 179: 7462–7467

    PubMed  CAS  Google Scholar 

  • Armstrong GA (1995) Genetic analysis and regulation of carotenoid biosynthesis: Structure and function of the crt genes and gene products. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 1135–1157. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annu Rev Microbiol 51: 629–659

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Alberti M, Leach F and Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216: 254–268

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Krieg NR and Staley JT (2005) Bergey’s Manual of Systematic Bacteriology, 2nd edition, Vol 2, The Proteobacteria. Springer, New York

    Google Scholar 

  • Britton G, Singh RK, Goodwin TW and Ben-Aziz A (1975) The carotenoids of Rhodomicrobium vannielii (Rhodospirillaceae) and the effect of diphenylamine on the carotenoid composition. Phytochemistry 14: 2427–2433

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S and Pfander H (eds) (2004) Carotenoids Handbook. Birkhaüser, Basel

    Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI and Imhoff JF (2000) Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 50: 2157–2163

    PubMed  Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176

    Article  Google Scholar 

  • Caumette P, Guyoneaud R, Imhoff JF, Süling J and Gorlenko V (2004) Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol 54: 1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Davies BH (1970) A novel sequence for phytoene dehydrogenation in Rhodospirillum rubrum. Biochem J 116: 93–99

    PubMed  CAS  Google Scholar 

  • Dilling W, Liesack W and Pfennig N (1995) Rhabdochromatium marinum gen. nom. rev, sp. nov., apurple sulfur bacterium from a salt marsh microbial mat. Arch Microbiol 164: 125–131

    Article  CAS  Google Scholar 

  • Eimhjellen KE, Steensland H and Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol 59: 82–92

    Article  PubMed  CAS  Google Scholar 

  • Francis GW and Liaaen-Jensen S (1970) Bacterial carotenoids: XXXIII. Carotenoids of Thiorhodaceae: 9. The structures of the carotenoids of the rhodopinal series. Acta Chem Scand 24: 2705–2712

    Article  PubMed  CAS  Google Scholar 

  • Frank HA, Chadwick BW, Taremi S, Kolaczkowski S and Bowman MK (1986) Singlet and triplet absorption spectra of carotenoids bound in the reaction centers of Rhodopseudomonas sphaeroides R26. FEBS Lett 203: 157–163

    Article  CAS  Google Scholar 

  • Fujii R, Chen CH, Mizoguchi T and Koyama Y (1998) 1H NMR, electronic-absorption and resonance Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8′-carotenal and spheroidene. Spectrochim Acta A54: 727–743

    Google Scholar 

  • Garcia-Asua G, Cogdell RJ and Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44: 233–244

    Article  PubMed  CAS  Google Scholar 

  • Gardiner AT, Cogdell RJ and Takaichi S (1993) The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38: 159–167

    Article  CAS  Google Scholar 

  • Giraud E, Hannibal L, Fardoux J, Jaubert M, Jourand P, Dreyfus B, Sturgis JN and Verméglio A (2004) Two distinct crt gene clusters for two different functional classes of carotenoid in Bradyrhizobium. J Biol Chem 279: 15076–15083

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Giliberto L and Rosati C (2002) Carotenoid isomerase: A tale of light and isomers. Trends Plant Sci 7: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW (1956) The carotenoids of photosynthetic bacteria: II. The carotenoids of a number of non-sulphur purple photosynthetic bacteria (Athiorhodaceae). Arch Mikrobiol 24: 313–322

    Article  PubMed  CAS  Google Scholar 

  • Guyoneaud R, Matheron R, Liesack W, Imhoff JF and Caumette P (1997) Thiorhodococcus minus, gen. nov., sp. nov., a new purple sulfur bacterium isolated from coastal lagoon sediments. Arch Microbiol 168: 16–23

    Article  PubMed  CAS  Google Scholar 

  • Hannibal L, Lorquin J, D’Ortoli NA, Garcia N, Chaintreuil C, Masson-Boivin C, Dreyfus B and Giraud E (2000) Isolation and characterization of canthaxanthin biosynthesis genes from the photosynthetic bacterium Bradyrhzobium sp. strain ORS278. J Bacteriol 182: 3850–3853

    Article  PubMed  CAS  Google Scholar 

  • Harada J, Nagashima KVP, Takaichi S, Misawa N, Matsuura K and Shimada K (2001) Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Plant Cell Physiol 42: 1112–1118

    Article  PubMed  CAS  Google Scholar 

  • Harashima K and Nakada H (1983) Carotenoids and ubiquinone in aerobically grown cells of an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Agric Biol Chem 47: 1057–1063

    CAS  Google Scholar 

  • Harashima K, Nakagawa M and Murata N (1982) Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23: 185–193

    CAS  Google Scholar 

  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N and Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: Its transfer to the genus Acidiphilium as Acidiphilium acidophium comb. nov. Int J Syst Bacteriol 48: 1389–1398

    PubMed  CAS  Google Scholar 

  • Hundle BS, O’Brien DA, Alberti M, Beyer P and Hearst JE (1992) Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci USA 89: 9321–9325

    Article  PubMed  CAS  Google Scholar 

  • Hunter CN, Hundle BS, Hearst JE, Gardiner AT, Takaichi S and Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176: 3692–3697

    PubMed  CAS  Google Scholar 

  • Imhoff JF and Madigan MT (2004) International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 27 august 2003, Tokyo, Japan. Int J Syst Evol Microbiol 54: 1001–1003, and Erratum 1907

    Article  Google Scholar 

  • Imhoff JF and Pfennig N (2001) Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 51: 105–110

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Petri R and Süling J (1998a) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48: 793–798

    PubMed  Google Scholar 

  • Imhoff JF, Süling J and Petri R (1998b) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48: 1129–1143

    Article  PubMed  Google Scholar 

  • IUPAC Commission on Nomenclature of Organic Chemistry and the IUPAC-IUB Commission on Biochemical Nomenclature (1975) Nomenclature of carotenoids. Pure Appl Chem 41: 407–431

    Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S and Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182: 236–243

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H, Schmitt R, Meister W, Englert G and Thommen H (1979) New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos. Z Naturforsch 34 c: 181–185

    Google Scholar 

  • Komori M, Ghosh R, Takaichi S, Hu Y, Mizoguchi T, Koyama Y and Kuki M (1998) A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway. Biochemistry 37: 8987–8994

    Article  PubMed  CAS  Google Scholar 

  • Kovács ÁT, Rákhely G and Kovács KL (2003) Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 69: 3093–3102

    Article  PubMed  CAS  Google Scholar 

  • Lang HP, Cogdell RJ and Hunter CN (1994) Early steps in carotenoid biosynthesis: Sequence and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides. Overexpression andreactivation of crtI in Escherichia coli and Rhodobacter sphaeroides. J Bacteriol 176: 3859–3869

    PubMed  CAS  Google Scholar 

  • Lang HP, Cogdell RJ, Takaichi S and Hunter CN (1995) Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177: 2064–2073

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47–65

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Misawa N, Chamovitz D, Pecker I, Hirscherg and Sandmann G (1991) Functional complementation in Escherichia coli of different phytoene desaturase genes and analysis of accumulated carotenes. Z Naturforsch 46 c: 1045–1051

    Google Scholar 

  • Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Miyasaka H, Umeda F, Kawase M, Takaichi S and Yagi K (2005) Unusual accumulation of demethylspheroidene in anaerobicphototrophic growth of crtA-deleted mutants of Rhodovulum sulfidophilum. Curr Microbiol 51: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Kawase M, Miyasaka H and Yagi K (2006) Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl Microbiol Biotechnol 70: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Malhotra HC, Britton G and Goodwin TW (1970) A novel series of 1,2-dihydro carotenoids. Int J Vit Res 40: 315–322

    CAS  Google Scholar 

  • Maresca JA and Bryant DA (2006) Two new encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 188: 6217–6223

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K and Shimada K (1993) Electrochromic spectral band shift of carotenoids in the photo synthetic membranes of Rhodospirillum molischianum and Rhodospirillumphotometricum. Biochim Biophys Acta 1140: 293–296

    Article  CAS  Google Scholar 

  • Matsumura H, Takeyama H, Kusakabe E, Burgess JG and Matsunaga T (1997) Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain OCh 101 in Escherichia coli. Gene 189: 169–174

    Article  PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K and Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172: 6704–6712

    PubMed  CAS  Google Scholar 

  • Noguchi T, Hayashi H, Shimada K, Takaichi S and Tasumi M (1992) In vivo states and functions of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth Res 31: 21–30

    Article  CAS  Google Scholar 

  • Ouchane S, Picaud M, Vernotte C, Reiss-Husson F and Astier C (1997a) Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. J Biol Chem 272: 1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Ouchane S, Picaud M, Vernotte C and Astier C (1997b) Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus. EMBO J 16: 4777–4787

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Fischer U and Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157: 329–335

    Article  CAS  Google Scholar 

  • Pfennig N, Markham MC and Liaaen-Jensen S (1968) Carotenoids of Thiorhodaceae: 8. Isolation and characterization of a Thiothece, Lamprocystis and Thiodictyon strain and their carotenoid pigments. Arch Mikrobiol 62: 178–191

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J and Imhoff JF (1997) Rhodospira trueeperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Pinta V, Ouchane S, Picaud M, Takaichi S, Astier C and Reiss-Husson F (2003) Characterization of unusual hydroxy- and ketocarotenoids in Rubrivivax gelatinosus: Involvement of enzyme CrtF or CrtA. Arch Microbiol 179: 354–362

    PubMed  CAS  Google Scholar 

  • Raisig A, Bartley G, Scolnik P and Sandmann G (1996) Purification in an active state and properties of the 3-step phytoene desaturase from Rhodobacter capsulatus overexpressed in Escherichia coli. J Biochem 119: 559–564

    PubMed  CAS  Google Scholar 

  • Rees GN, Harfoot CG, Janssen PH, Schoenborn L, Kuever J and Lünsdorf H (2002) Thiobaca trueperi gen. nov., sp. nov., a phototrophic purple sulfur bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 52: 671–678

    PubMed  CAS  Google Scholar 

  • Reslewic S, Zhou S, Place M, Zhang Y, Briska A, Gokdstein S, Churas C, Runnheim R, Forrest D, Lim A, Lapidus A, Han CS, Roberts GP and Schwartz DC (2005) Whole-genome shotgun optical mapping of Rhodospirillum rubrum. Appl Environ Microbiol 71: 5511–5522

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565–574

    Article  PubMed  CAS  Google Scholar 

  • Ryvarden L and Liaaen-Jensen S (1964) Bacterial carotenoids: XIV The carotenoids of Rhodomicrobium vannielii. Acta Chem Scand 18: 643–654

    Article  CAS  Google Scholar 

  • Saitoh S,Takaichi S, Shimada K and Nishimura Y (1995) Identification and subcellular distribution of carotenoids in the aerobic photosynthetic bacterium, Pseudomonas radiora strain MD-1. Plant Cell Physiol 36: 819–823

    CAS  Google Scholar 

  • Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223: 7–24

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G (1997) High level expression of carotenogenic genes for enzyme purification and biochemical characterization. Pure Appl Chem 69: 2163–2168

    Article  CAS  Google Scholar 

  • Schmidt K (1971) Carotenoids of purple nonsulfur bacteria: Composition and biosynthesis of the carotenoids of some strains of Rhodopseudomonas acidophila, Rhodospirillum tenue, and Rhodocyclus purpureus. Arch Mikrobiol 77: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 729–750. Plenum Press, New York

    Google Scholar 

  • Schmidt K and Liaaen-Jensen S (1973) Bacterial carotenoids: XLII. New keto-carotenoids from Rhodopseudomonas globiformis (Rhodospirillaceae). Acta Chem Scand 27: 3040–3052

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Liaaen-Jensen S and Schlegel HG (1963) Die Carotinoide der Thiorhodaceae: I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46: 117–126

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Pfennig N and Liaaen-Jensen S (1965) Carotenoids of Thiorhodaceae: IV The carotenoid composition of 25 pure isolates. Arch Mikrobiol 52: 132–146

    PubMed  CAS  Google Scholar 

  • Schmidt K, Francis GW and Liaaen-Jensen S (1971) Bacterial carotenoids: XXXVI. Remarkable C43-carotenoid artefacts of cross-conjugated carotenals and new carotenoid glucosides from Athiorhodaceae spp. Acta Chem Scand 25: 2476–2486

    Article  PubMed  CAS  Google Scholar 

  • Schwerzmann RU and Bachofen R (1989) Carotenoid profiles in pigment-protein complexes of Rhodospirillum rubrum. Plant Cell Physiol 30: 497–504

    CAS  Google Scholar 

  • Scolnik PA, Walker MA and Marrs BL (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem 255: 2427–2432

    PubMed  CAS  Google Scholar 

  • Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 105–122. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Arch Microbiol 143: 244–247

    Article  CAS  Google Scholar 

  • Shimada K, Itoh S, Iwaki M, Nagashima KVP, Matuura K, Kobayashi M and Wakao N (1998) Reaction center complex based on Zn-bacteriochlorophyll from Acidiphilium rubrum. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol II, pp 909–912. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shneour EA (1962) The source of oxygen in Rhodopseudomonas spheroides carotenoid pigment conversion. Biochim Biophys Acta 65: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Britton G and Goodwin TW (1973) Carotenoid biosynthesis in Rhodopseudomonas spheroides: S-adenosylmethionine as the methylating agentin the biosynthesis of spheroidene and spheroidenone. Biochem J 136: 413–419

    PubMed  CAS  Google Scholar 

  • Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT and Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photo synthetic metabolism. J Bacteriol 189: 683–690

    Article  PubMed  CAS  Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids (Advances in Photosynthesis and Respiration, Vol 8), pp 39–69. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takaichi S and Shimada K (1992) Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213: 374–385

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1988) Monocyclic cross-conjugated carotenal from an aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 27: 3605–3609

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153: 118–122

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K, Ishidsu J and Shimada K (1991a) Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 30: 3411–3415

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K and Harashima K (1991b) Light-induced changes of carotenoid pigments in anaerobic cells of the aerobic photosynthetic bacterium, Roseobacter denitrificans (Erythrobacter species OCh 114): Reduction of spheroidenone to 3,4-dihydrospheroidenone. Arch Microbiol 155: 473–476

    Article  CAS  Google Scholar 

  • Takaichi S, Jung DO and Madigan MT (2001a) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylsphroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth Res 67: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Takaichi S, Maoka T, Hanada S and Imhoff JF (2001b) Dihydroxylycopene diglucoside diesters: a novel class of carotenoids from the phototrophic purple sulfur bacteria Halorhodospira abdelmalekii and Halorhodospira halochloris. Arch Microbiol 175: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Biochim Biophys Acta 890: 127–133

    Article  CAS  Google Scholar 

  • van Dien SJ, Marx CJ, O’Brien BN and Lidstrom ME (2003) Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant. App Environ Microbiol 69: 7563–7566

    Article  CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889–893

    CAS  Google Scholar 

  • Yeliseev AA and Kaplan S (1997) Anaerobic carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1: H2O is a source of oxygen for the 1-methoxy group of spheroidene but not for the 2-oxo group of spheroidenone. FEBS Lett 403: 10–14

    Article  PubMed  CAS  Google Scholar 

  • Yurkov V, Gad’on N and Drews G (1993) The major part of polar carotenoids of the aerobic bactevia Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 is not bound to the bacteriochlorophyll a-complexes of the photosynthetic apparatus. Arch Microbiol 160: 372–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Takaichi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Takaichi, S. (2009). Distribution and Biosynthesis of Carotenoids. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_6

Download citation

Publish with us

Policies and ethics