Skip to main content

Transcriptional Regulation of Hepatic Fatty Acid Metabolism

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

The liver is a major site of fatty acid synthesis and degradation. Transcriptional regulation is one of several mechanisms controlling hepatic metabolism of fatty acids. Two transcription factors, namely SREBP1-c and PPARα, appear to be the main players controlling synthesis and degradation of fatty acids respectively. This chapter briefly presents fatty acid metabolism. The first part focuses on SREBP1-c contribution to the control of gene expression relevant to fatty acid synthesis and the main mechanisms of activation for this transcriptional program. The second part reviews the evidence for the involvement of PPARα in the control of fatty acid degradation and the key features of this nuclear receptor. Finally, the third part aims at summarizing recent advances in our current understanding of how these two transcription factors fit in the regulatory networks that sense hormones or nutrients, including cellular fatty acids, and govern the transcription of genes implicated in hepatic fatty acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Elheiga, L., Brinkley, W. R., Zhong, L., Chirala, S. S., Woldegiorgis, G., and Wakil, S. J. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci U S A 97 (2000) 1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A., and Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291 (2001) 2613–2616.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga, L., Matzuk, M. M., Kordari, P., Oh, W., Shaikenov, T., Gu, Z., and Wakil, S. J. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci U S A 102 (2005) 12011–12016.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, T., Peters, J. M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., and Gonzalez, F. J. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273 (1998) 5678–5684.

    Article  PubMed  CAS  Google Scholar 

  • Asturias, F. J., Chadick, J. Z., Cheung, I. K., Stark, H., Witkowski, A., Joshi, A. K., and Smith, S. Structure and molecular organization of mammalian fatty acid synthase. Nat Struct Mol Biol 12 (2005) 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Azzout-Marniche, D., Becard, D., Guichard, C., Foretz, M., Ferre, P., and Foufelle, F. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 350 Pt 2 (2000) 389–393.

    Google Scholar 

  • Baes, M., Huyghe, S., Carmeliet, P., Declercq, P. E., Collen, D., Mannaerts, G. P., and Van Veldhoven, P. P. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275 (2000) 16329–16336.

    Article  PubMed  CAS  Google Scholar 

  • Barish, G. D., Narkar, V. A., and Evans, R. M. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116 (2006) 590–597.

    Article  PubMed  CAS  Google Scholar 

  • Barthel, A., Schmoll, D., and Unterman, T. G. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16 (2005) 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Bengoechea-Alonso, M. T., and Ericsson, J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19 (2007) 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Biggs, W. H., 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K., and Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96 (1999) 7421–7426.

    Article  PubMed  CAS  Google Scholar 

  • Botolin, D., Wang, Y., Christian, B., and Jump, D. B. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. J Lipid Res 47 (2006) 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89 (1997) 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (1999) 857–868.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, A., Park, J., Tran, H., Hu, L. S., Hemmings, B. A., and Greenberg, M. E. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21 (2001) 952–965.

    Article  PubMed  CAS  Google Scholar 

  • Burns, K. A., and Vanden Heuvel, J. P. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771 (2007) 952–960.

    PubMed  CAS  Google Scholar 

  • Cahill, C. M., Tzivion, G., Nasrin, N., Ogg, S., Dore, J., Ruvkun, G., and Alexander-Bridges, M. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276 (2001) 13402–13410.

    Article  PubMed  CAS  Google Scholar 

  • Cha, J. Y., and Repa, J. J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282 (2007) 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy, M. V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J. G., Coleman, T., Turk, J., and Semenkovich, C. F. "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1 (2005) 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Liang, G., Ou, J., Goldstein, J. L., and Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A 101 (2004) 11245–11250.

    Article  PubMed  CAS  Google Scholar 

  • Chirala, S. S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahon, K., Finegold, M., and Wakil, S. J. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A 100 (2003) 6358–6363.

    Article  PubMed  CAS  Google Scholar 

  • Chirala, S. S., Jayakumar, A., Gu, Z. W., and Wakil, S. J. Human fatty acid synthase: role of interdomain in the formation of catalytically active synthase dimer. Proc Natl Acad Sci U S A 98 (2001) 3104–3108.

    Article  PubMed  CAS  Google Scholar 

  • Chirala, S. S., and Wakil, S. J. Structure and function of animal fatty acid synthase. Lipids 39 (2004) 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H. P., Nakamura, M., and Clarke, S. D. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274 (1999a) 37335–37339.

    Article  CAS  Google Scholar 

  • Cho, H. P., Nakamura, M. T., and Clarke, S. D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 274 (1999b) 471–477.

    Article  CAS  Google Scholar 

  • Chui, P. C., Guan, H. P., Lehrke, M., and Lazar, M. A. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J Clin Invest 115 (2005) 2244–2256.

    Article  PubMed  CAS  Google Scholar 

  • Clement, L., Poirier, H., Niot, I., Bocher, V., Guerre-Millo, M., Krief, S., Staels, B., and Besnard, P. Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43 (2002) 1400–1409.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P., Miyazaki, M., Socci, N. D., Hagge-Greenberg, A., Liedtke, W., Soukas, A. A., Sharma, R., Hudgins, L. C., Ntambi, J. M., and Friedman, J. M. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297 (2002) 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Costet, P., Legendre, C., More, J., Edgar, A., Galtier, P., and Pineau, T. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273 (1998) 29577–29585.

    Article  PubMed  CAS  Google Scholar 

  • D'Andrea, S., Guillou, H., Jan, S., Catheline, D., Thibault, J. N., Bouriel, M., Rioux, V., and Legrand, P. The same rat Delta6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. Biochem J 364 (2002) 49–55.

    PubMed  Google Scholar 

  • Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M., and Fukamizu, A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52 (2003) 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Denechaud, P. D., Bossard, P., Lobaccaro, J. M., Millatt, L., Staels, B., Girard, J., and Postic, C. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 118 (2008) 956–964.

    PubMed  CAS  Google Scholar 

  • Dentin, R., Benhamed, F., Pegorier, J. P., Foufelle, F., Viollet, B., Vaulont, S., Girard, J., and Postic, C. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 115 (2005) 2843–2854.

    Article  PubMed  CAS  Google Scholar 

  • Desvergne, B., Michalik, L., and Wahli, W. Transcriptional regulation of metabolism. Physiol Rev 86 (2006) 465–514.

    Article  PubMed  CAS  Google Scholar 

  • Desvergne, B., and Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20 (1999) 649–688.

    Article  PubMed  CAS  Google Scholar 

  • Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384 (1996) 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyn, A., and Ntambi, J. M. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukot Essent Fatty Acids 73 (2005) 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Dowell, P., Ishmael, J. E., Avram, D., Peterson, V. J., Nevrivy, D. J., and Leid, M. p300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha. J Biol Chem 272 (1997) 33435–33443.

    Article  PubMed  CAS  Google Scholar 

  • Du, X., Kristiana, I., Wong, J., and Brown, A. J. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell 17 (2006) 2735–2745.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, E. A., Dave, U. P., Sakai, J., Goldstein, J. L., and Brown, M. S. Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J Biol Chem 273 (1998) 17801–17809.

    Article  PubMed  CAS  Google Scholar 

  • Eberle, D., Hegarty, B., Bossard, P., Ferre, P., and Foufelle, F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86 (2004) 839–848.

    Article  PubMed  CAS  Google Scholar 

  • Ellinghaus, P., Wolfrum, C., Assmann, G., Spener, F., and Seedorf, U. Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/ sterol carrier protein x-deficient mice. J Biol Chem 274 (1999) 2766–2772.

    Article  PubMed  CAS  Google Scholar 

  • Embi, N., Rylatt, D. B., and Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107 (1980) 519–527.

    PubMed  CAS  Google Scholar 

  • Engelking, L. J., Evers, B. M., Richardson, J. A., Goldstein, J. L., Brown, M. S., and Liang, G. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. J Clin Invest 116 (2006) 2356–2365.

    Article  PubMed  CAS  Google Scholar 

  • Engelking, L. J., Kuriyama, H., Hammer, R. E., Horton, J. D., Brown, M. S., Goldstein, J. L., and Liang, G. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest 113 (2004) 1168–1175.

    PubMed  CAS  Google Scholar 

  • Engelking, L. J., Liang, G., Hammer, R. E., Takaishi, K., Kuriyama, H., Evers, B. M., Li, W. P., Horton, J. D., Goldstein, J. L., and Brown, M. S. Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest 115 (2005) 2489–2498.

    Article  PubMed  CAS  Google Scholar 

  • Espenshade, P. J., and Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41 (2007) 401–427.

    Article  PubMed  CAS  Google Scholar 

  • Espenshade, P. J., Li, W. P., and Yabe, D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc Natl Acad Sci U S A 99 (2002) 11694–11699.

    Article  PubMed  CAS  Google Scholar 

  • Fan, C. Y., Pan, J., Usuda, N., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273 (1998) 15639–15645.

    Article  PubMed  CAS  Google Scholar 

  • Feige, J. N., Gelman, L., Tudor, C., Engelborghs, Y., Wahli, W., and Desvergne, B. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 280 (2005) 17880–17890.

    Article  PubMed  CAS  Google Scholar 

  • Ferre, P., and Foufelle, F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68 (2007) 72–82.

    PubMed  CAS  Google Scholar 

  • Fleischmann, M., and Iynedjian, P. B. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 349 (2000) 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Foretz, M., Guichard, C., Ferre, P., and Foufelle, F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A 96 (1999) 12737–12742.

    Article  PubMed  CAS  Google Scholar 

  • Forman, B. M., Chen, J., and Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A 94 (1997) 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  • Frame, S., Cohen, P., and Biondi, R. M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7 (2001) 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G., and Piomelli, D. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425 (2003) 90–93.

    Article  PubMed  CAS  Google Scholar 

  • George, S., Rochford, J. J., Wolfrum, C., Gray, S. L., Schinner, S., Wilson, J. C., Soos, M. A., Murgatroyd, P. R., Williams, R. M., Acerini, C. L., et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304 (2004) 1325–1328.

    Article  PubMed  CAS  Google Scholar 

  • Gervois, P., Fruchart, J. C., and Staels, B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 3 (2007) 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Gottlicher, M., Widmark, E., Li, Q., and Gustafsson, J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A 89 (1992) 4653–4657.

    Article  PubMed  CAS  Google Scholar 

  • Guan, H. P., Ishizuka, T., Chui, P. C., Lehrke, M., and Lazar, M. A. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 19 (2005) 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Guillou, H., D'Andrea, S., Rioux, V., Barnouin, R., Dalaine, S., Pedrono, F., Jan, S., and Legrand, P. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Delta6-desaturase activity. J Lipid Res 45 (2004) 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Guo, S., Rena, G., Cichy, S., He, X., Cohen, P., and Unterman, T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 274 (1999) 17184–17192.

    Article  PubMed  CAS  Google Scholar 

  • Gurkan, C., Stagg, S. M., Lapointe, P., and Balch, W. E. The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7 (2006) 727–738.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Cook, W. S., Qi, C., Yeldandi, A. V., Reddy, J. K., and Rao, M. S. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275 (2000) 28918–28928.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Fujita, T., Usuda, N., Cook, W., Qi, C., Peters, J. M., Gonzalez, F. J., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274 (1999) 19228–19236.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P. T., Anderson, K. E., Davidson, K., and Stephens, L. R. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34 (2006) 647–662.

    Article  PubMed  CAS  Google Scholar 

  • Hegarty, B. D., Bobard, A., Hainault, I., Ferre, P., Bossard, P., and Foufelle, F. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci U S A 102 (2005) 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, F. S., and Ozols, J. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 68 (2003) 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Hi, R., Osada, S., Yumoto, N., and Osumi, T. Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor alpha. Importance of alpha-helical structure in the transactivating function. J Biol Chem 274 (1999) 35152–35158.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., and Sato, R. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J Biol Chem 278 (2003) 16809–16819.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, Y., Yoshida, M., Shimizu, M., and Sato, R. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J Biol Chem 276 (2001) 36431–36437.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J. D. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans 30 (2002) 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J. D., Bashmakov, Y., Shimomura, I., and Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 95 (1998a) 5987–5992.

    Article  CAS  Google Scholar 

  • Horton, J. D., Shah, N. A., Warrington, J. A., Anderson, N. N., Park, S. W., Brown, M. S., and Goldstein, J. L. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100 (2003) 12027–12032.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J. D., Shimomura, I., Brown, M. S., Hammer, R. E., Goldstein, J. L., and Shimano, H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101 (1998b) 2331–2339.

    Article  CAS  Google Scholar 

  • Hostetler, H. A., Kier, A. B., and Schroeder, F. Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Biochemistry 45 (2006) 7669–7681.

    Article  PubMed  CAS  Google Scholar 

  • Hostetler, H. A., Petrescu, A. D., Kier, A. B., and Schroeder, F. Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands. J Biol Chem 280 (2005) 18667–18682.

    Article  PubMed  CAS  Google Scholar 

  • Hua, X., Sakai, J., Brown, M. S., and Goldstein, J. L. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J Biol Chem 271 (1996) 10379–10384.

    Article  PubMed  CAS  Google Scholar 

  • Hua, X., Wu, J., Goldstein, J. L., Brown, M. S., and Hobbs, H. H. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 25 (1995) 667–673.

    Article  PubMed  CAS  Google Scholar 

  • Hummasti, S., and Tontonoz, P. The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis. Mol Endocrinol 20 (2006) 1261–1275.

    Article  PubMed  CAS  Google Scholar 

  • Ide, T., Shimano, H., Yoshikawa, T., Yahagi, N., Amemiya-Kudo, M., Matsuzaka, T., Nakakuki, M., Yatoh, S., Iizuka, Y., Tomita, S., et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol 17 (2003) 1255–1267.

    Article  PubMed  CAS  Google Scholar 

  • Issemann, I., and Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347 (1990) 645–650.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson, A., Westerberg, R., and Jacobsson, A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res 45 (2006) 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., and Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383 (1996) 728–731.

    Article  PubMed  CAS  Google Scholar 

  • Jeffcoat, R., Brawn, P. R., Safford, R., and James, A. T. Properties of rat liver microsomal stearoyl-coenzyme A desaturase. Biochem J 161 (1977) 431–437.

    PubMed  CAS  Google Scholar 

  • Jia, Y., Qi, C., Kashireddi, P., Surapureddi, S., Zhu, Y. J., Rao, M. S., Le Roith, D., Chambon, P., Gonzalez, F. J., and Reddy, J. K. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver. J Biol Chem 279 (2004) 24427–24434.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y., Qi, C., Zhang, Z., Hashimoto, T., Rao, M. S., Huyghe, S., Suzuki, Y., Van Veldhoven, P. P., Baes, M., and Reddy, J. K. Overexpression of peroxisome proliferator-activated receptor-alpha (PPARalpha)-regulated genes in liver in the absence of peroxisome proliferation in mice deficient in both L- and D-forms of enoyl-CoA hydratase/dehydrogenase enzymes of peroxisomal beta-oxidation system. J Biol Chem 278 (2003) 47232–47239.

    Article  PubMed  CAS  Google Scholar 

  • Juge-Aubry, C. E., Hammar, E., Siegrist-Kaiser, C., Pernin, A., Takeshita, A., Chin, W. W., Burger, A. G., and Meier, C. A. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem 274 (1999) 10505–10510.

    Article  PubMed  CAS  Google Scholar 

  • Jump, D. B. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 277 (2002) 8755–8758.

    Article  PubMed  CAS  Google Scholar 

  • Jump, D. B., Botolin, D., Wang, Y., Xu, J., Christian, B., and Demeure, O. Fatty acid regulation of hepatic gene transcription. J Nutr 135 (2005) 2503–2506.

    PubMed  CAS  Google Scholar 

  • Jurczak, M. J., Danos, A. M., Rehrmann, V. R., and Brady, M. J. The role of protein translocation in the regulation of glycogen metabolism. J Cell Biochem (2007) In press.

    Google Scholar 

  • Kerner, J., and Hoppel, C. Fatty acid import into mitochondria. Biochim Biophys Acta 1486 (2000) 1–17.

    PubMed  CAS  Google Scholar 

  • Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B., and Wahli, W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103 (1999) 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. B., and Spiegelman, B. M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10 (1996) 1096–1107.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. B., Spotts, G. D., Halvorsen, Y. D., Shih, H. M., Ellenberger, T., Towle, H. C., and Spiegelman, B. M. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol 15 (1995) 2582–2588.

    PubMed  CAS  Google Scholar 

  • Kim, K. H. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 17 (1997) 77–99.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. H., Song, M. J., Yoo, E. J., Choe, S. S., Park, S. D., and Kim, J. B. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J Biol Chem 279 (2004) 51999–52006.

    Article  PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., Devchand, P., Wahli, W., Willson, T. M., Lenhard, J. M., and Lehmann, J. M. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94 (1997) 4318–4323.

    Article  PubMed  CAS  Google Scholar 

  • Koo, S. H., Satoh, H., Herzig, S., Lee, C. H., Hedrick, S., Kulkarni, R., Evans, R. M., Olefsky, J., and Montminy, M. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 10 (2004) 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G., and Wahli, W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11 (1997) 779–791.

    Article  PubMed  CAS  Google Scholar 

  • Kroetz, D. L., Yook, P., Costet, P., Bianchi, P., and Pineau, T. Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem 273 (1998) 31581–31589.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda, F. P. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66 (2006) 5977–5980.

    Article  PubMed  CAS  Google Scholar 

  • Kumadaki, S., Matsuzaka, T., Kato, T., Yahagi, N., Yamamoto, T., Okada, S., Kobayashi, K., Takahashi, A., Yatoh, S., Suzuki, H., et al. Mouse Elovl-6 promoter is an SREBP target. Biochem Biophys Res Commun 368 (2008) 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Lazennec, G., Canaple, L., Saugy, D., and Wahli, W. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol Endocrinol 14 (2000) 1962–1975.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., and Kim, M. S. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 77 Suppl 1 (2007) S49–S57.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. S., Pineau, T., Drago, J., Lee, E. J., Owens, J. W., Kroetz, D. L., Fernandez-Salguero, P. M., Westphal, H., and Gonzalez, F. J. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15 (1995) 3012–3022.

    PubMed  CAS  Google Scholar 

  • Lee, Y. S., Sohn, D. H., Han, D., Lee, H. W., Seong, R. H., and Kim, J. B. Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Mol Cell Biol 27 (2007) 438–452.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, A. E., Pereira, S. L., Sprecher, H., and Huang, Y. S. Elongation of long-chain fatty acids. Prog Lipid Res 43 (2004) 36–54.

    Article  PubMed  CAS  Google Scholar 

  • Leone, T. C., Weinheimer, C. J., and Kelly, D. P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96 (1999) 7473–7478.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. J., Huang, C. J., and Xie, D. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52 (2008) In press.

    Google Scholar 

  • Li, X., Monks, B., Ge, Q., and Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447 (2007) 1012–1016.

    Article  PubMed  CAS  Google Scholar 

  • Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L., and Brown, M. S. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 277 (2002) 9520–9528.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., Puigserver, P., Donovan, J., Tarr, P., and Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277 (2002) 1645–1648.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., Yang, R., Tarr, P. T., Wu, P. H., Handschin, C., Li, S., Yang, W., Pei, L., Uldry, M., Tontonoz, P., et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120 (2005) 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Q., Ruuska, S. E., Shaw, N. S., Dong, D., and Noy, N. Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry 38 (1999) 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Lo Verme, J., Fu, J., Astarita, G., La Rana, G., Russo, R., Calignano, A., and Piomelli, D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67 (2005) 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., and Kuhajda, F. P. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288 (2000) 2379–2381.

    Article  PubMed  CAS  Google Scholar 

  • Lonard, D. M., and O'Malley B, W. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27 (2007) 691–700.

    Article  PubMed  CAS  Google Scholar 

  • Longo, N., Amat di San Filippo, C., and Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 142 (2006) 77–85.

    Google Scholar 

  • Louet, J. F., Hayhurst, G., Gonzalez, F. J., Girard, J., and Decaux, J. F. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J Biol Chem 277 (2002) 37991–38000.

    Article  PubMed  CAS  Google Scholar 

  • Lu, M., and Shyy, J. Y. Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am J Physiol Cell Physiol 290 (2006) C1477–1486.

    Article  PubMed  CAS  Google Scholar 

  • Maier, T., Jenni, S., and Ban, N. Architecture of mammalian fatty acid synthase at 4.5 A resolution. Science 311 (2006) 1258–1262.

    Article  PubMed  CAS  Google Scholar 

  • Mandard, S., Muller, M., and Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61 (2004) 393–416.

    Article  PubMed  CAS  Google Scholar 

  • Mao, J., DeMayo, F. J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T. E., Kordari, P., Chirala, S. S., Heird, W. C., and Wakil, S. J. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103 (2006) 8552–8557.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt, A., Stohr, H., White, K., and Weber, B. H. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66 (2000) 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P. G., Guillou, H., Lasserre, F., Dejean, S., Lan, A., Pascussi, J. M., Sancristobal, M., Legrand, P., Besse, P., and Pineau, T. Novel aspects of PPARalpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology 45 (2007) 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, M., Korn, B. S., Hammer, R. E., Moon, Y. A., Komuro, R., Horton, J. D., Goldstein, J. L., Brown, M. S., and Shimomura, I. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev 15 (2001) 1206–1216.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Yu, S., Jia, Y., Ahmed, M. R., Viswakarma, N., Sarkar, J., Kashireddy, P. V., Rao, M. S., Karpus, W., Gonzalez, F. J., and Reddy, J. K. Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development. J Biol Chem 282 (2007) 17053–17060.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Ogawa, W., Akimoto, K., Inoue, H., Miyake, K., Furukawa, K., Hayashi, Y., Iguchi, H., Matsuki, Y., Hiramatsu, R., et al. PKClambda in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. J Clin Invest 112 (2003) 935–944.

    PubMed  CAS  Google Scholar 

  • Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Yoshikawa, T., Hasty, A. H., Tamura, Y., Osuga, J., Okazaki, H., Iizuka, Y., et al. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res 43 (2002) 107–114.

    PubMed  CAS  Google Scholar 

  • Matsuzaka, T., Shimano, H., Yahagi, N., Kato, T., Atsumi, A., Yamamoto, T., Inoue, N., Ishikawa, M., Okada, S., Ishigaki, N., et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13 (2007) 1193–1202.

    Article  PubMed  CAS  Google Scholar 

  • McGarry, J. D., and Brown, N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244 (1997) 1–14.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, R., and Gauthier, A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol 82 (2004) 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Menendez, J. A., and Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7 (2007) 763–777.

    Article  PubMed  CAS  Google Scholar 

  • Miserez, A. R., Cao, G., Probst, L. C., and Hobbs, H. H. Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 40 (1997) 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Mitro, N., Mak, P. A., Vargas, L., Godio, C., Hampton, E., Molteni, V., Kreusch, A., and Saez, E. The nuclear receptor LXR is a glucose sensor. Nature 445 (2007) 219–223.

    Google Scholar 

  • Miyazaki, M., Flowers, M. T., Sampath, H., Chu, K., Otzelberger, C., Liu, X., and Ntambi, J. M. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6 (2007) 484–496.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, M., Jacobson, M. J., Man, W. C., Cohen, P., Asilmaz, E., Friedman, J. M., and Ntambi, J. M. Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 278 (2003) 33904–33911.

    Google Scholar 

  • Miyazaki, M., Man, W. C., and Ntambi, J. M. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr 131 (2001) 2260–2268.

    PubMed  CAS  Google Scholar 

  • Moon, Y. A., Shah, N. A., Mohapatra, S., Warrington, J. A., and Horton, J. D. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276 (2001) 45358–45366.

    Article  PubMed  CAS  Google Scholar 

  • Mora, A., Komander, D., van Aalten, D. M., and Alessi, D. R. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15 (2004) 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Moya-Camarena, S. Y., Vanden Heuvel, J. P., Blanchard, S. G., Leesnitzer, L. A., and Belury, M. A. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 40 (1999) 1426–1433.

    PubMed  CAS  Google Scholar 

  • Murakami, K., Ide, T., Suzuki, M., Mochizuki, T., and Kadowaki, T. Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun 260 (1999) 609–613.

    Article  PubMed  CAS  Google Scholar 

  • Nara, T. Y., He, W. S., Tang, C., Clarke, S. D., and Nakamura, M. T. The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun 296 (2002) 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J. M., Miyazaki, M., Stoehr, J. P., Lan, H., Kendziorski, C. M., Yandell, B. S., Song, Y., Cohen, P., Friedman, J. M., and Attie, A. D. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99 (2002) 11482–11486.

    Article  PubMed  CAS  Google Scholar 

  • Nwankwo, J. O., Spector, A. A., and Domann, F. E. A nucleotide insertion in the transcriptional regulatory region of FADS2 gives rise to human fatty acid delta-6-desaturase deficiency. J Lipid Res 44 (2003) 2311–2319.

    Article  PubMed  CAS  Google Scholar 

  • Obsil, T., Ghirlando, R., Anderson, D. E., Hickman, A. B., and Dyda, F. Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42 (2003) 15264–15272.

    Article  PubMed  CAS  Google Scholar 

  • Obsilova, V., Vecer, J., Herman, P., Pabianova, A., Sulc, M., Teisinger, J., Boura, E., and Obsil, T. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44 (2005) 11608–11617.

    Article  PubMed  CAS  Google Scholar 

  • Pai, J. T., Guryev, O., Brown, M. S., and Goldstein, J. L. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273 (1998) 26138–26148.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, C. N., Hsu, M. H., Griffin, K. J., Raucy, J. L., and Johnson, E. F. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 53 (1998) 14–22.

    PubMed  CAS  Google Scholar 

  • Patsouris, D., Reddy, J. K., Muller, M., and Kersten, S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology 147 (2006) 1508–1516.

    Article  PubMed  CAS  Google Scholar 

  • Pawar, A., Botolin, D., Mangelsdorf, D. J., and Jump, D. B. The role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol Chem 278 (2003) 40736–40743.

    Article  PubMed  CAS  Google Scholar 

  • Pawar, A., and Jump, D. B. Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes. J Biol Chem 278 (2003) 35931–35939.

    Article  PubMed  CAS  Google Scholar 

  • Peet, D. J., Janowski, B. A., and Mangelsdorf, D. J. The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 8 (1998) 571–575.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. M., Park, Y., Gonzalez, F. J., and Pariza, M. W. Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor alpha-null mice. Biochim Biophys Acta 1533 (2001) 233–242.

    PubMed  CAS  Google Scholar 

  • Porstmann, T., Griffiths, B., Chung, Y. L., Delpuech, O., Griffiths, J. R., Downward, J., and Schulze, A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24 (2005) 6465–6481.

    PubMed  CAS  Google Scholar 

  • Prasad, M. R., Nagi, M. N., Ghesquier, D., Cook, L., and Cinti, D. L. Evidence for multiple condensing enzymes in rat hepatic microsomes catalyzing the condensation of saturated, monounsaturated, and polyunsaturated acyl coenzyme A. J Biol Chem 261 (1986) 8213–8217.

    CAS  Google Scholar 

  • Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D., and Spiegelman, B. M. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423 (2003) 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Punga, T., Bengoechea-Alonso, M. T., and Ericsson, J. Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J Biol Chem 281 (2006) 25278–25286.

    Article  PubMed  CAS  Google Scholar 

  • Qi, C., Zhu, Y., Pan, J., Usuda, N., Maeda, N., Yeldandi, A. V., Rao, M. S., Hashimoto, T., and Reddy, J. K. Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty acyl CoA oxidase in PPARalpha ligand metabolism. J Biol Chem 274 (1999) 15775–15780.

    Article  PubMed  CAS  Google Scholar 

  • Ren, B., Thelen, A. P., Peters, J. M., Gonzalez, F. J., and Jump, D. B. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J Biol Chem 272 (1997) 26827–26832.

    Article  PubMed  CAS  Google Scholar 

  • Rena, G., Guo, S., Cichy, S. C., Unterman, T. G., and Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274 (1999) 17179–17183.

    Article  PubMed  CAS  Google Scholar 

  • Repa, J. J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J. M., Shimomura, I., Shan, B., Brown, M. S., Goldstein, J. L., and Mangelsdorf, D. J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14 (2000) 2819–2830.

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo, P., Matern, D., and Bennett, M. J. Fatty acid oxidation disorders. Annu Rev Physiol 64 (2002) 477–502.

    Article  PubMed  CAS  Google Scholar 

  • Roach, P. J. Glycogen and its metabolism. Curr Mol Med 2 (2002) 101–120.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, J., Nohturfft, A., Goldstein, J. L., and Brown, M. S. Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies. J Biol Chem 273 (1998) 5785–5793.

    Article  PubMed  CAS  Google Scholar 

  • Sampath, H., and Ntambi, J. M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25 (2005) 317–340.

    Article  PubMed  CAS  Google Scholar 

  • Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T., Denis, S., Wouters, F., Wirtz, K. W., Wanders, R. J., et al. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12 (1998) 1189–1201.

    Article  PubMed  CAS  Google Scholar 

  • Sekiya, M., Yahagi, N., Matsuzaka, T., Najima, Y., Nakakuki, M., Nagai, R., Ishibashi, S., Osuga, J., Yamada, N., and Shimano, H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 38 (2003) 1529–1539.

    PubMed  CAS  Google Scholar 

  • Shalev, A., Siegrist-Kaiser, C. A., Yen, P. M., Wahli, W., Burger, A. G., Chin, W. W., and Meier, C. A. The peroxisome proliferator-activated receptor alpha is a phosphoprotein: regulation by insulin. Endocrinology 137 (1996) 4499–4502.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Z., Otani, H., Brown, M. S., and Goldstein, J. L. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci U S A 92 (1995) 935–938.

    Article  PubMed  CAS  Google Scholar 

  • Shimano, H., Horton, J. D., Hammer, R. E., Shimomura, I., Brown, M. S., and Goldstein, J. L. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98 (1996) 1575–1584.

    Article  PubMed  CAS  Google Scholar 

  • Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S., and Goldstein, J. L. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99 (1997a) 846–854.

    Article  CAS  Google Scholar 

  • Shimano, H., Shimomura, I., Hammer, R. E., Herz, J., Goldstein, J. L., Brown, M. S., and Horton, J. D. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 100 (1997b) 2115–2124.

    Article  CAS  Google Scholar 

  • Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A. H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., et al. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274 (1999) 35832–35839.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, I., Bashmakov, Y., Ikemoto, S., Horton, J. D., Brown, M. S., and Goldstein, J. L. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96 (1999) 13656–13661.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L., and Brown, M. S. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99 (1997) 838–845.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A 71 (1974) 4565–4569.

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist, A., Bengoechea-Alonso, M. T., Ye, X., Lukiyanchuk, V., Jin, J., Harper, J. W., and Ericsson, J. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1 (2005) 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Surapureddi, S., Yu, S., Bu, H., Hashimoto, T., Yeldandi, A. V., Kashireddy, P., Cherkaoui-Malki, M., Qi, C., Zhu, Y. J., Rao, M. S., and Reddy, J. K. Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha -interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci U S A 99 (2002) 11836–11841.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Yahagi, N., Nakagawa, Y., Matsuzaka, T., Shimizu, R., Sekiya, M., Iizuka, Y., Ohashi, K., Gotoda, T., Yamamoto, M., et al. In vivo promoter analysis on refeeding response of hepatic sterol regulatory element-binding protein-1c expression. Biochem Biophys Res Commun 363 (2007) 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Tan, N. S., Shaw, N. S., Vinckenbosch, N., Liu, P., Yasmin, R., Desvergne, B., Wahli, W., and Noy, N. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22 (2002) 5114–5127.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, C. M., Kondo, T., Sajan, M., Luo, J., Bronson, R., Asano, T., Farese, R., Cantley, L. C., and Kahn, C. R. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab 3 (2006) 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Theodoulou, F. L., Holdsworth, M., and Baker, A. Peroxisomal ABC transporters. FEBS Lett 580 (2006) 1139–1155.

    Article  PubMed  CAS  Google Scholar 

  • Tobin, K. A., Ulven, S. M., Schuster, G. U., Steineger, H. H., Andresen, S. M., Gustafsson, J. A., and Nebb, H. I. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem 277 (2002) 10691–10697.

    Article  PubMed  CAS  Google Scholar 

  • Tong, L., and Harwood, H. J., Jr. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem 99 (2006) 1476–1488.

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz, P., Kim, J. B., Graves, R. A., and Spiegelman, B. M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13 (1993) 4753–4759.

    PubMed  CAS  Google Scholar 

  • Tudor, C., Feige, J. N., Pingali, H., Lohray, V. B., Wahli, W., Desvergne, B., Engelborghs, Y., and Gelman, L. Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem 282 (2007) 4417–4426.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, Y., Izai, K., Orii, T., and Hashimoto, T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem 267 (1992) 1034–1041.

    PubMed  CAS  Google Scholar 

  • Uyeda, K., and Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4 (2006) 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Vega, R. B., Huss, J. M., and Kelly, D. P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20 (2000) 1868–1876.

    Article  PubMed  CAS  Google Scholar 

  • Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 266 (1991) 19995–20000.

    PubMed  CAS  Google Scholar 

  • Walczak, R., and Tontonoz, P. PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J Lipid Res 43 (2002) 177–186.

    PubMed  CAS  Google Scholar 

  • Wanders, R. J., and Waterham, H. R. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763 (2006) 1707–1720.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Yu, L., Schmidt, R. E., Su, C., Huang, X., Gould, K., and Cao, G. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332 (2005) 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Sato, R., Brown, M. S., Hua, X., and Goldstein, J. L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77 (1994) 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., Jayaprakasam, B., Nair, M. G., Peters, J. M., Busik, J. V., Olson, L. K., and Jump, D. B. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 47 (2006) 2028–2041.

    Article  PubMed  CAS  Google Scholar 

  • Weber, L. W., Boll, M., and Stampfl, A. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol 10 (2004) 3081–3087.

    PubMed  CAS  Google Scholar 

  • Whiteman, E. L., Cho, H., and Birnbaum, M. J. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13 (2002) 444–451.

    Article  PubMed  CAS  Google Scholar 

  • Widmer, J., Fassihi, K. S., Schlichter, S. C., Wheeler, K. S., Crute, B. E., King, N., Nutile-McMenemy, N., Noll, W. W., Daniel, S., Ha, J., et al. Identification of a second human acetyl-CoA carboxylase gene. Biochem J 316 (Pt 3) (1996) 915–922.

    PubMed  CAS  Google Scholar 

  • Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. M., and Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432 (2004) 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, C., Besser, D., Luca, E., and Stoffel, M. Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 100 (2003) 11624–11629.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, C., Borrmann, C. M., Borchers, T., and Spener, F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A 98 (2001) 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, C., and Stoffel, M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab 3 (2006) 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Woodgett, J. R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. Embo J 9 (1990) 2431–2438.

    PubMed  CAS  Google Scholar 

  • Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., Sternbach, D. D., Lehmann, J. M., Wisely, G. B., Willson, T. M., et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3 (1999a) 397–403.

    Article  CAS  Google Scholar 

  • Xu, J., Nakamura, M. T., Cho, H. P., and Clarke, S. D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J Biol Chem 274 (1999b) 23577–23583.

    Article  CAS  Google Scholar 

  • Xu, J., Teran-Garcia, M., Park, J. H., Nakamura, M. T., and Clarke, S. D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem 276 (2001) 9800–9807.

    Article  PubMed  CAS  Google Scholar 

  • Yabe, D., Komuro, R., Liang, G., Goldstein, J. L., and Brown, M. S. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A 100 (2003) 3155–3160.

    Article  PubMed  CAS  Google Scholar 

  • Yahagi, N., Shimano, H., Hasty, A. H., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., Iizuka, Y., Shionoiri, F., Ohashi, K., Osuga, J., et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J Biol Chem 274 (1999) 35840–35844.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., Shimano, H., Inoue, N., Nakagawa, Y., Matsuzaka, T., Takahashi, A., Yahagi, N., Sone, H., Suzuki, H., Toyoshima, H., and Yamada, N. Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J Biol Chem 282 (2007) 11687–11695.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. Y., He, X. Y., and Schulz, H. 3-Hydroxyacyl-CoA dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. Febs J 272 (2005) 4874–4883.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L., and Brown, M. S. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110 (2002) 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C. R., Granner, D. K., et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413 (2001) 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Ide, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Matsuzaka, T., Yatoh, S., Kitamine, T., Okazaki, H., Tamura, Y., et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17 (2003) 1240–1254.

    Article  PubMed  CAS  Google Scholar 

  • Zandbergen, F., and Plutzky, J. PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta 1771 (2007) 972–982.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Ge, L., Parimoo, S., Stenn, K., and Prouty, S. M. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 340 (Pt 1) (1999) 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Yang, Y., and Shi, Y. Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J 388 (2005) 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Patil, S., Chauhan, B., Guo, S., Powell, D. R., Le, J., Klotsas, A., Matika, R., Xiao, X., Franks, R., et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281 (2006) 10105–10117.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Eilertsen, K. J., Ge, L., Zhang, L., Sundberg, J. P., Prouty, S. M., Stenn, K. S., and Parimoo, S. Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat Genet 23 (1999) 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Zoete, V., Grosdidier, A., and Michielin, O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta 1771 (2007) 915–925.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Guillou, H., Martin, P.G., Pineau, T. (2008). Transcriptional Regulation of Hepatic Fatty Acid Metabolism. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_1

Download citation

Publish with us

Policies and ethics