Skip to main content

Do Experimental Violations of Bell Inequalities Require a Nonlocal Interpretation of Quantum Mechanics? II: Analysis à la Bell

  • Chapter
Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle

Part of the book series: The Western Ontario Series in Philosophy of Science ((WONS,volume 73))

  • 1389 Accesses

Bell inequalities are derived assuming (i) hidden variables, (ii) positive probabilities for seemingly physical correlations, and (iii) locality. The over-riding role of assumption (ii) has generally not been emphasized. Since results of Bell inequality experiments show a violation of the inequality and agreement with quantum mechanical predictions, one or more of these assumptions is wrong. Thus, in the physical world, we cannot have hidden variables, and/or we must accept negative probabilities, and/or we must accept non-locality. Equivalently, the experiments tell us that any hidden variable theory (with associated non-negative probabilities) must be non-local; on the other hand, if a theory encompasses no hidden variables (e.g. quantum mechanics), the experiments do not make a statement about locality. Of course, the definition of “locality” plays a critical role, and that will be reviewed. In a previous paper (Phys. Lett. A 347, 56–61, 2005), it was shown that the assumption of hidden variables (e.g. seemingly physical correlations) leads directly to negative (non-physical) probabilities in the Wigner—Bell model. In this paper, we provide analyses based both on Bell's derivation of the inequality and on the Clauser—Horne version for inherently stochastic theories. We examine probabilities that must be non-negative in these derivations and show how to evaluate them within the framework of quantum mechanics. We repeatedly show that the assumption of hidden variables in the derivation of a Bell inequality leads to supposedly non-negative probabilities whose quantum mechanical counterparts are, in fact, negative under some conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47, 777–780 (1935).

    Article  MATH  ADS  Google Scholar 

  2. J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics 1, 195–200 (1964).

    Google Scholar 

  3. S. J. Freedman and J. F. Clauser, “Experimental Test of Local Hidden-Variable Theories,” Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  Google Scholar 

  4. E. S. Fry and R. C. Thompson, “Experimental Test of Local Hidden-Variable Theories,” Phys. Rev. Lett. 37, 465–468 (1976).

    Article  ADS  Google Scholar 

  5. A. Aspect, P. Grangier, and G. Roger, “Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities,” Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  6. A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time-Varying Analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  7. Z. Y. Ou and L. Mandel, “Violation of Bell's Inequality and Classical Probability in a Two-Photon Correlation Experiment,” Phys. Rev. Lett. 61, 50–53 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  8. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).

    Article  ADS  Google Scholar 

  9. Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).

    Article  ADS  Google Scholar 

  10. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, “Violation of Bell's Inequality over 4 km of Optical Fiber,” Phys. Rev. Lett. 73, 1923–1926 (1994).

    Article  ADS  Google Scholar 

  11. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).

    Article  ADS  Google Scholar 

  12. E. S. Fry and T. Walther, “A Bell Inequality Experiment Based on Molecular Dissociation — Extension of the Lo-Shimony Proposal to 199Hg (Nuclear Spin 1/2) Dimers”, in R.S. Cohen, M.A. Horne, and J. Stachel, eds., Experimental Metaphysics—Quantum Mechanical Studies for Abner Shimony, Vol. I. Kluwer Academic: Dordrecht, The Netherlands. p. 61–71 (1997).

    Google Scholar 

  13. E. S. Fry, T. Walther, and S. Li, “Proposal for a Loophole Free Test of the Bell Inequalities,” Phys. Rev. A 52, 4381–4395 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  14. P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a Loophole-Free Bell Inequality Experiment,” Phys. Rev. A 49, 3209–3220 (1994).

    Article  ADS  Google Scholar 

  15. A. Shimony, Search for a Naturalistic World View: Volume2. Cambridge University Press: New York (1993).

    Book  Google Scholar 

  16. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press: Cambridge (1987).

    Google Scholar 

  17. M. O. Scully, N. Erez, and E. S. Fry, “Do EPR-Bell Correlations Require a Non-Local Interpretation of Quantum Mechanics? I: Wigner Approach,” Phys. Lett. A 347, 56–61 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. P. Jarrett, “On the Physical Significance of the Locality Conditions in the Bell Arguments,” Noûs 18, 569–589 (1984).

    Article  MathSciNet  Google Scholar 

  19. A. Shimony, “New Aspects of Bell's Theorem”, in J. Ellis and D. Amati, eds., Quantum Reflections. Cambridge University Press: Cambridge. p. 136–164 (2000).

    Google Scholar 

  20. P. H. Eberhard, “Bell's Theorem without Hidden Variables,” Nuovo Cimento 38B, 75–80 (1977).

    ADS  Google Scholar 

  21. G. C. Ghirardi, A. Rimini, and T. Weber, “A General Argument against Superluminal Transmission through the Quantum Mechanical Measurement Process,” Nuovo Cimento Letters 27, 293–298 (1980).

    Article  MathSciNet  Google Scholar 

  22. D. N. Page, “The Einstein-Podolsky-Rosen Physical Reality Is Completely Described by Quantum Mechanics,” Phys. Lett. 91A, 57–60 (1982).

    MathSciNet  ADS  Google Scholar 

  23. N. Gisin, “Weinberg's Non-Linear Quantum Mechanics and Supraluminal Communications,” Phys. Lett. A 143, 1–2 (1990).

    Article  ADS  Google Scholar 

  24. S. Weinberg, “Testing Quantum Mechanics,” Ann. Phys. 194, 336–386 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. F. Clauser and M. A. Horne, “Experimental Consequences of Objective Local Theories,” Phys. Rev. D 10, 526–535 (1974).

    Article  ADS  Google Scholar 

  26. J. F. Clauser and A. Shimony, “Bell's Theorem: Experimental Tests and Implications,” Rep. Prog. Phys. 41, 1881–1927 (1978).

    Article  ADS  Google Scholar 

  27. E. P. Wigner, “On Hidden Variables and Quantum Mechanical Probabilities,” Am. J. Phys. 38, 1005–1009 (1970).

    Article  ADS  Google Scholar 

  28. F. J. Belinfante, A Survey of Hidden-Variable Theories. Pergamon: New York (1973).

    Google Scholar 

  29. M. O. Scully, “How to Make Quantum Mechanics Look Like a Hidden-Variable Theory and Vice Versa,” Phys. Rev. D 28, 2477–2484 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Aspect, “Comment on a Classical Model of EPR Experiment with Quantum Mechanical Correlations and Bell Inequalities”, in G.T. Moore and M.O. Scully, eds., Frontiers of Nonequilibrium Statistical Physics. Plenum: New York. p. 185–189 (1986).

    Google Scholar 

  31. P. Meystre, “Is reality really real? An Introduction to Bell's Inequalities”, in A.O. Barut, ed., Quantum Electrodynamics and Quantum Optics. Plenum: New York. p. 443–458 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward S. Fry or Xinmei Qu .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Fry, E.S., Qu, X., Scully, M.O. (2009). Do Experimental Violations of Bell Inequalities Require a Nonlocal Interpretation of Quantum Mechanics? II: Analysis à la Bell. In: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. The Western Ontario Series in Philosophy of Science, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9107-0_10

Download citation

Publish with us

Policies and ethics