Skip to main content

Unraveling the Hidden Nature of Antenna Excitations

  • Chapter
Photosynthesis in silico

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 29))

The three main parameters that determine the electronic structure and dynamics of the photosynthetic antenna excitations are the resonant (exciton) coupling energy, the inhomogeneous spectral broadening, and the exciton—lattice coupling energy. Generally, information about these factors can be obtained by optical spectroscopy. However, in conventional optical spectroscopy only ensemble-averaged data are accessible. Adequate theoretical modeling is, therefore, required to uncover various hidden parameters. Here, we focus on the peripheral LH2 and core LH1 antenna complexes from purple bacteria. These bacteriochlorophyll-containing antennas show quasi-linear optical spectra that allow detailed spectro-scopic studies not only at cryogenic temperatures but at physiological temperatures as well. The strongly overlapping chlorophyll spectra in higher plant antennas are in that respect much less informative. Secondly, the bacterial antennas present wonderfully ordered quasi- one-dimensional structures of pigment molecules amenable for straightforward physical modeling. Complexity of the antennas and incomplete structural data render similar level of multi-parameter modeling in higher plants more challenging.

We notice that the generally applied disordered Frenkel exciton model, while sufficient for describing steady-state absorption spectra, falls short in characterization of the fluorescence emission properties of the bacterial antennas. Therefore, an excitonic polaron model is introduced, much better suitable for description of the relaxed excited electronic states in the disordered one-dimensional bacteriochloro-phyll aggregates representing the emitting antenna structures with relatively strong interaction between excitons and lattice vibrations. The static disorder considerably reduces critical exciton—lattice coupling energy required for initiation of the smooth exciton self-trapping transition. It also allows coexistence of multiple self-trapped excitons in the same lattice. Such a situation in regular structures is only possible at higher dimensions. The exciton self-trapping might promote energy transport and trapping processes in bacterial photosynthesis by broadening the LH2 and LH1 antenna spectra and by maximizing their fluorescence emission rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolphs J and Renger T (2006) How proteins trigger energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91: 2778–2797

    PubMed  CAS  Google Scholar 

  • Agarwal R, Rizvi AH, Prall BS, Olsen JD, Hunter CN and Fleming GR (2002) Nature of disorder and inter-complex energy transfer in LH2 at room temperature: A three photon echo peal shift study. J Phys Chem A 106: 7573–7578

    CAS  Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature 447: 58–63

    PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Van der Werf KO, Otto C, Hunter CN and Olsen JD (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy. J Biol Chem 279: 21327–21333

    PubMed  CAS  Google Scholar 

  • Beekman LMP, Van Mourik F, Jones MR, Visser HM, Hunter CN and Van Grondelle R (1994) Trapping in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: Influence of the charge separation rate and consequences for the rate-limiting step in the lightharvesting process. Biochemistry 33: 3143–3147

    PubMed  CAS  Google Scholar 

  • Borisov AY and Godik VI (1972) Energy transfer in bacterial photosynthesis. I. Light intensity dependences of fluorescence lifetimes. J Bioenerg 3: 211–220

    PubMed  CAS  Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Rebane K and Timpmann K (1985) Kinetics of picosecond bacteriochlorophyll luminescence in vivo as a function of the reaction center state. Biochim Biophys Acta 807: 221–229

    CAS  Google Scholar 

  • Cogdell RJ, Gall A and Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Quart Rev Biophys 39: 227–324

    CAS  Google Scholar 

  • Cruzeiro-Hansson L, Eilbeck JC, Marin JL and Russell FM (2000) Interplay between dispersive and non-dispersive modes in the polaron problem. Phys Lett A 266: 160–166

    CAS  Google Scholar 

  • Dahlbom M, Pullerits T, Mukamel S and Sundstrom V (2001) Exciton delocalization in the B850 light-harvesting complex: Comparison of different measures. J Phys Chem B 105: 5515–5524

    CAS  Google Scholar 

  • Damjanovic A, Kosztin I, Kleinekathöfer U and Schulten K (2002) Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65: 031919–031943

    Google Scholar 

  • Davydov AS (1971) Theory of Molecular Excitons. Plenum Press, New York

    Google Scholar 

  • Dobek A, Deprez J, Paillotin G, Leibl W, Trissl HW and Breton J (1990) Excitation trapping efficiency and kinetics in Rb. sphaeroides R26.1 whole cells probed by photovoltage measurements on the picosecond time-scale. Biochim Biophys Acta 1015: 313–321

    CAS  Google Scholar 

  • Duysens LNM (1952) PhD Thesis: Transfer of Excitation Energy in Photosynthesis. State University, Utrecht

    Google Scholar 

  • Duysens LNM (1986) Introduction to (bacterio) chlorophyll emission: A historical perspective. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 3–28. Academic, Orlando, FL

    Google Scholar 

  • Emerson R and Arnold WA (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    CAS  Google Scholar 

  • Emin D and Bussac M-N (1994) Disorder-induced smallpolaron formation. Phys Rev B 49: 14290–14300

    CAS  Google Scholar 

  • Fenna RE and Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573–577

    CAS  Google Scholar 

  • Fetisova ZG (2004) Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations. Mol Biol 38: 434–440

    CAS  Google Scholar 

  • Fetisova ZG, Borisov AY and Fok MV (1985) Analysis of structure-function correlations in light-harvesting photosynthetic antenna: Structure optimization parameters. J Theor Biol 112: 41–75

    Google Scholar 

  • Fetisova ZG, Freiberg A and Timpmann K (1988) Longrange molecular order as an efficient strategy for light harvesting in photosynthesis. Nature 334: 633–634

    CAS  Google Scholar 

  • Fetisova ZG, Shibaeva LV and Fok MV (1989) Biological expedience of oligomerization of chlorophyllous pigments in natural photosynthetic systems. J Theor Biol 140: 167–184

    CAS  Google Scholar 

  • Fetisova ZG, Shibaeva LV and Taisova AS (1995) Oligomerization of light-harvesting pigments as a structural factor optimizing photosynthetic antenna function. I. Model calculations. Mol Biol (Moscow) 29: 1384–1390

    CAS  Google Scholar 

  • Fidder H, Knoester J and Wiersma DA (1991) Optical properties of disordered molecular aggregates: A numerical study. J Chem Phys 95: 7880–7890

    CAS  Google Scholar 

  • Franck J and Teller E (1938) Migration and photochemical action of excitation energy in crystals. J Chem Phys 6: 861–872

    CAS  Google Scholar 

  • Freiberg A (1995) Coupling of antennas to reaction centers. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 385–398. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Freiberg A, Godik VI and Timpmann K (1984) Excitation energy transfer in bacterial photosynthesis studied by picosecond laser spectrochronography. In: Sybesma C (ed) Advances in Photosynthesis Research, pp 45–48. Nijhoff, Hague, The Netherlands

    Google Scholar 

  • Freiberg A, Godik VI and Timpmann K (1987) Spectral dependence of the fluorescence lifetime of Rhodospirillum rubrum. Evidence for inhomogeneity of B880 absorption band. In: Biggins J (ed) Progress in Photosynthesis Research, pp 45–48. Nijhoff, Dordrecht, The Netherlands

    Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpmann KE (1988) Directed picosecond excitation transport in purple photosynthetic bacteria. Chem Phys 128: 227–235

    CAS  Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpman K (1989) Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light-harvesting antenna of purple bacteria. Biochim Biophys Acta 973: 93–104

    CAS  Google Scholar 

  • Freiberg A, Allen JP, Williams J and Woodbury NW (1996) Energy trapping and detrapping by wild type and mutant reaction centers of purple non-sulfur bacteria. Photosynth Res 48: 309–319

    CAS  Google Scholar 

  • Freiberg A, Jackson JA, Lin S and Woodbury NW (1998a) Subpicosecond pump-supercontinuum probe spectroscopy of LH2 photosynthetic antenna proteins at low temperature. J Phys Chem A 102: 4372–4380

    CAS  Google Scholar 

  • Freiberg A, Timpmann K, Lin S and Woodbury NW (1998b) Exciton relaxation and transfer in the LH2 antenna network of photosynthetic bacteria. J Phys Chem B 102: 10974–10982

    CAS  Google Scholar 

  • Freiberg A, Timpmann K, Ruus R and Woodbury NW (1999) Disordered exciton analysis of linear and nonlinear absorption spectra of antenna bacteriochlorophyll aggregates: LH2-only mutant chromatophores of Rhodobacter sphaeroides at 8 K under spectrally selective excitation. J Phys Chem B 103: 10032–10041

    CAS  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K and Trinkunas G (2003a) Self-trapped excitons in circular bacteriochlorophyll antenna complexes. J Luminescence 102–103: 363–368

    Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K, Trinkunas G and Woodbury NW (2003b) Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J Phys Chem B 107: 11510–11519

    CAS  Google Scholar 

  • Godik VI and Borisov AY (1977) Excitation trapping by different states of photosynthetic reaction centers. FEBS Lett 82: 355–358

    PubMed  CAS  Google Scholar 

  • Godik VI, Freiberg A, Timpmann K, Borisov AY and Rebane K (1987) Picosecond excitation energy transfer between different light-harvesting complexes and reaction centers in purple bacteria. In: Biggins J (ed) Progress in Photosynthesis Research, pp 41–44. Nijhoff, Dordrecht, The Netherlands

    Google Scholar 

  • Godik VI, Timpmann KE and Freiberg AF (1988) Spectral inhomogeneity of the bacteriochlorophyll absorption band of Rhodospirillum rubrum as studied by picosecond fluorescence spectroscopy. Dokl Akad Nauk SSSR 298: 1469–1473

    CAS  Google Scholar 

  • Gooijer C, Ariese F and Hofstraat JW (2000) Shpol'skii Spectroscopy and Other Site-Selective Methods. Wiley, New York, USA

    Google Scholar 

  • Green BR and Parson WW (eds) (2003) Ligh-Harvesting Antennas in Photosynthesis. Kluwer, Dordrecht/Boston, MA/ London

    Google Scholar 

  • Hayes JM, Lyle PA and Small GJ (1994) A theory for the temperature dependence of hole-burned spectra. J Phys Chem 98: 7337–7341

    CAS  Google Scholar 

  • Heijs DJ, Malyshev VA and Knoester J (2005) Decoherence of excitons in multichromophore systems: Thermal line broadening and destruction of superradiant emission. Phys Rev Lett 95: 177402

    PubMed  CAS  Google Scholar 

  • Hofmann C, Michel H, Van Heel M and Köhler J (2005) Multivariate analysis of single-molecule spectra: Surpassing spectral diffusion. Phys Rev Lett 94: 195501

    PubMed  Google Scholar 

  • Holstein T (1959) Studies of polaron motion. Part I. The molecular-crystal model. Ann Phys 8: 325–342

    CAS  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35: 1–62

    CAS  Google Scholar 

  • Jang S, Dempster SE and Silbey RJ (2001) Characterization of the static disorder in the B850 of LH2. J Phys Chem B 2001: 6655–6665

    Google Scholar 

  • Jimenez R, Dikshit SN, Bradforth SE and Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem 100: 6825–6834

    CAS  Google Scholar 

  • Kabanov VV and Mashtakov OY (1993) Electron localization with and without barrier formation. Phys Rev B 47: 6060–6064

    CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–368

    PubMed  CAS  Google Scholar 

  • Katiliene Z, Katilius E, Uyeda G, Williams J-AC and Woodbury NW (2004) Increasingthe rate of energy transfer between the LH1 antenna and the reaction center in the photosynthetic bacterium Rhodobacter sphaeroides. J Phys Chem B 108: 3863–3870

    CAS  Google Scholar 

  • Kikas J (1978) Effects of inhomogneity and site selective impurity-phonon coupling in solid solutions. Chem Phys Lett 57: 511–513

    CAS  Google Scholar 

  • Knox RS (1963) Theory of Excitons. Academic, New York

    Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    PubMed  CAS  Google Scholar 

  • Koolhaas MHC, Van der Zwan G, Frese RN and Van Grondelle R (1997) Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study. J Phys Chem B 101: 7262–7270

    CAS  Google Scholar 

  • Kramer HJM, Van Grondelle R, Hunter CN, Westerhuis WHJ and Amesz J (1984) Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 765: 156–165

    CAS  Google Scholar 

  • Leggett AJ, Chakravarty S, Dorsey AT, Fischer MPA, Garg A and Zwerger W (1987) Dynamics of the dissipative twostate system. Rev Mod Phys 59: 1–85

    CAS  Google Scholar 

  • Liuolia V, Valkunas L and Van Grondelle R (1997) Excitons in dimerized chains. J Phys Chem B 101: 7343–7349

    CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438: 1040–1044

    PubMed  CAS  Google Scholar 

  • Lu N and Mukamel S (1991) Polaron and size effects in optical lineshapes of molecular aggregates. J Chem Phys B 95: 1588–1607

    CAS  Google Scholar 

  • Markvart T (2000) Light harvesting for quantum solar conversion. Prog Quant Electr 24: 107–186

    CAS  Google Scholar 

  • Markvart T and Greef R (2004) Polaron-exciton model of resonance energy transfer. J Chem Phys 121: 6401–6405

    PubMed  CAS  Google Scholar 

  • Matsui A, Mizuno K and Nishimura H (1984) Zero-phonon kines associated with self-trapped exciton states and exciton dynamics in β-perylene. J Phys Soc Jpn 53: 2818–2827

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane lightharvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800–820 LH3 lightharvesting complex from the purple bacteria Rhodopseudomonas acidophila stain 7050. Biochemistry 40: 8783–8789

    PubMed  CAS  Google Scholar 

  • Meier T, Zhao Y, Chernyak V and Mukamel S (1997) Polarons, localization, and excitoniccoherence in superradiance of biological antenna complexes. J Chem Phys 107: 3876–3893

    CAS  Google Scholar 

  • Michel H and Deisenhofer J (1990) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis: aspects of membrane protein structure. Curr Top Membr Transp 36: 53–69

    CAS  Google Scholar 

  • Monshouwer R, Visschers RW, Van Mourik F, Freiberg A and Van Grondelle R (1995) Low-temperature absorption and site-selected fluorescence of the light-harvesting antenna of Rhodopseudomonas viridis. Evidence for heterogeneity. Biochim Biophys Acta 1229: 373–380

    Google Scholar 

  • Monshouwer R, Abrahamsson M, Van Mourik F and Van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241–7248

    CAS  Google Scholar 

  • Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy. Oxford/New York

    Google Scholar 

  • Noba K and Kayanuma Y (1998) Numerically rigorous results for the ground stsate of exciton-lattice systems. J Phys Soc Jpn 67: 3972–3975

    CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1993) Excitonic interactions in the light-harvesting antenna of photosynthetic purple bacteria and their influence on picosecond absorbance difference spectra. FEBS Lett 330: 5–7

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1995) Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. Biophys J 68: 1089–1100

    PubMed  CAS  Google Scholar 

  • Novoderezhkin V, Monshouwer R and Van Grondelle R (1999) Disordered exciton model for the core lightharvesting antenna of Rhodopseudomonas viridis. Biophys J 77: 666–681

    PubMed  CAS  Google Scholar 

  • Nuijs AM, Van Grondelle R, Joppe HLP, Cees Van Bochove A and Duysens LNM (1986) A picosecondabsorption study on bacteriochlorophyll excitation, trapping and primary-charge separation in chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 850: 286–293

    CAS  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ and Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 A resolution at 100 K: New structural features and functionally relevant motions. J Mol Biol 326: 1523–1538

    PubMed  CAS  Google Scholar 

  • Pearlstein RM (1982) Exciton migration and trapping in photosynthesis. Photochem Photobiol 35: 835–844

    CAS  Google Scholar 

  • Pieper J, Voigt J, Renger G and Small GJ (1999) Analysis of phonon structure in line-narrowed optical spectra. Chem Phys Lett 310: 296–302

    CAS  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyrindum cruentum. Biochim Biophys Acta 501: 232–245

    PubMed  CAS  Google Scholar 

  • Pullerits T and Freiberg A (1991) Picosecond fluorescence of simple photosynthetic membranes: evidence of spectral inhomogeneity and directed energy transfer. Chem Phys 149: 409–418

    CAS  Google Scholar 

  • Pullerits T, Visscher KJ, Hees S, Sundstroem V, Freiberg A, Timpmann K and Van Grondelle R (1994) Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics. Biophys J 66: 236–248

    PubMed  CAS  Google Scholar 

  • Rashba IE (1982) Self-trapping of excitons. In: Sturge MD (ed) Excitons, pp 543–602. North-Holland, Amsterdam

    Google Scholar 

  • Rätsep M and Freiberg A (2003) Resonant emission from the B870 exciton state and electron-phonon coupling in the LH2 antenna chromoprotein. Chem Phys Lett 377: 371–376

    Google Scholar 

  • Rätsep M and Freiberg A (2007) Electron-phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J Luminescence 127: 251–259

    Google Scholar 

  • Rätsep M, Hunter CN, Olsen JD and Freiberg A (2005) Band structure and local dynamics of excitons in bacterial light-harvesting complexes revealed by spectrally selective spectroscopy. Photosynth Res 86: 37–48

    PubMed  Google Scholar 

  • Rebane KK (1970) Impurity Spectra of Solids. Plenum Press, New York

    Google Scholar 

  • Reddy NRS, Picorel R and Small GJ (1992) B896 and B870 components of the Rhodobacter sphaeroides antenna: A hole burning study. J Phys Chem 96: 6458–6464

    CAS  Google Scholar 

  • Renger T and Marcus RA (2002) On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116: 9997–10019

    CAS  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol 19: 16–48

    Google Scholar 

  • Romero AH, Brown DW and Lindenberg K (1999) Effects of dimensionality and anisotropy on the Holstein polaron. Phys Rev B 60: 14080–14091

    CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Sapozhnikov MN and Alekseev VI (1984) Site selective luminescence spectroscopy of impurity centres in solids: Model calculations and experiment. Chem Phys Lett 107: 265–271

    CAS  Google Scholar 

  • Sauer K and Austin LA (1978) Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry 17: 2011–2019

    PubMed  CAS  Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564–576

    CAS  Google Scholar 

  • Scherz A and Parson WW (1986) Interactions of the bacteriochlorophylls in antenna bacteriochlorophyll-protein complexes of photosynthetic bacteria. Photosynth Res 9: 21–32

    CAS  Google Scholar 

  • Scheuring S (2006) AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. Curr Opin Chem Biol 10: 387–393

    PubMed  CAS  Google Scholar 

  • Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54: 57–87

    PubMed  CAS  Google Scholar 

  • Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854–1868

    CAS  Google Scholar 

  • Scholes GD and Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5: 683–693

    PubMed  CAS  Google Scholar 

  • Scholes GD, Harcourt RD and Fleming GR (1997) Electronic interactions in photosynthetic light-harvesting complexes: The role of carotenoids. J Phys Chem B 101: 7302–7312

    CAS  Google Scholar 

  • Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial ligh-harvesting complex of Rps. acidophila. J Phys Chem B 103: 2543–2553

    CAS  Google Scholar 

  • Schröder M, Kleinekathöfer U and Schreiber M (2006) Calculation of absorption spectra for light-harvesting systems using non-Markovian approaches as well as modified Redfield theory. J Chem Phys 124: 084903

    PubMed  Google Scholar 

  • Sebban P and Moya I (1983) Fluorescence lifetime spectra of in vivo bacteriochlorophyll at room temperature. Biochim Biophys Acta 722: 436–442

    CAS  Google Scholar 

  • Sebban P, Jolchine G and Moya I (1984) Spectra of fluorescence lifetime and intensity of Rhodopseudomonas sphaeroides at room and low temperature. Comparison between the wild type, the C 71 reaction center-less mutant and the B800–850 pigment-protein complex. Photochem Photobiol 39: 247–253

    Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG and Albrecht AC (1991) Femtosecond energy-transfer processes in the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288

    PubMed  CAS  Google Scholar 

  • Song KS and Williams RT (1992) Self-Trapped Excitons. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Stoneham AM, Gavartin J, Shluger AL, Kimmel AV, MĹ©noz Ramo D, Rønnow HM, Aeppli G and Renner C (2007) Trapping, self-trapping and the polaron family. J Phys: Condens Matter 19: 255208

    Google Scholar 

  • Sumi H (1994) Two types of self-trapped states for excitons in one dimension. J Phys Soc Jpn 63: 4489–4498

    Google Scholar 

  • Sumi H (1999a) Theory of rapid excitation-energy transfer from B800 to optically-forbbiden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103: 6096–6102

    Google Scholar 

  • Sumi H (1999b) Theory of rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260

    CAS  Google Scholar 

  • Sumi H(2000) Bacterialphotosynthesis begins with quantummechanical coherence. Chem Rec 1: 480–493

    Google Scholar 

  • Sundström V, Van Grondelle R, Bergstroem H, Aakesson E and Gillbro T (1986) Excitation-energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by lowintensity picosecond absorption spectroscopy. Biochim Biophys Acta 851: 431–446

    Google Scholar 

  • Sundström V, Pullerits T and Van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Google Scholar 

  • Tanaka S (2003) Ultrafast relaxation dynamics of the one-dimensional molecular chain: The time-resolved spontaneous emission and exciton coherence. J Chem Phys 119: 4891–4904

    CAS  Google Scholar 

  • Tietz C, Chekhlov O, Dräbenstedt A, Schuster J and WrachtrupJ(1999)Spectroscopyonsinglelight-harvesting complexes at low temperature. J Phys Chem B 103: 6328–6333

    CAS  Google Scholar 

  • Timpmann K, Zhang FG, Freiberg A and Sundström V (1993) Detrapping of excitation energy from the reaction center in the photosynthetic purple bacterium Rhodospirillum rubrum. Biochim Biophys Acta 1183: 185–193

    CAS  Google Scholar 

  • Timpmann K, Freiberg A and Sundström V (1995) Energy trapping and detrapping in the photosynthetic bacterium Rhodopseudomonas viridis: transfer-to-trap-limited dynamics. Chem Phys 194: 275–283

    CAS  Google Scholar 

  • Timpmann K, Katiliene Z, Woodbury NW and Freiberg A (2001) Exciton self-trapping in one-dimensional photosynthetic antennas. J Phys Chem B 105: 12223–12225

    CAS  Google Scholar 

  • Timpmann K, Rätsep M, Hunter CN and Freiberg A (2004a) Emitting excitonic polaron states in core LH1 and peripheral LH2 bacterial light-harvesting complexes. J Phys Chem B 108: 10581–10588

    CAS  Google Scholar 

  • Timpmann K, Trinkunas G, Olsen JD, Hunter CN and Freiberg A (2004b) Bandwidth of excitons in LH2 bacterial antenna chromoproteins. Chem Phys Lett 398: 384–388

    CAS  Google Scholar 

  • Timpmann K, Trinkunas G, Qian P, Hunter CN and Freiberg A (2005) Excitons in core LH1 antenna complexes of photosynthetic bacteria: Evidence for strong resonant coupling and off-diagonal disorder. Chem Phys Lett 414: 359–363

    CAS  Google Scholar 

  • Trinkunas G and Freiberg A (2005) Abrupt exciton selftrapping in finite and disordered one-dimensional aggregates. J Luminescence 112: 420–423

    CAS  Google Scholar 

  • Trinkunas G and Freiberg A (2006) A disordered polaron model for polarized fluorescence excitation spectra of LH1 and LH2 bacteriochlorophyll antenna aggregates. J Luminescence 119–120: 105–110

    Google Scholar 

  • Ueta M, Kanzaki H, Kobayashi K, Toyozawa Y and Hanamura E (1986) Excitonic Processes in Solids. Springer, Berlin

    Google Scholar 

  • Urboniene V, Vrublevskaja O, Gall A, Trinkunas G, Robert B and Valkunas L (2005) Temperature broadening of LH2 absorption in glycerol solution. Photosynth Res 86: 49–59

    PubMed  CAS  Google Scholar 

  • Urboniene V, Vrublevskaja O, Trinkunas G, Gall A, Robert B and Valkunas L (2007) Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Biophys J 93: 2188–2198

    PubMed  CAS  Google Scholar 

  • Van Amerongen H, Valkunas L and Van Grondelle R (2000) Photosynthetic Excitons. World Scientific, Singapore

    Google Scholar 

  • Van der Laan H, Schmidt T, Visschers RW, Visscher KJ, Van Grondelle R and Volker S (1990) Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: a study by spectral hole-burning. Chem Phys Lett 170: 231–238

    Google Scholar 

  • Van Grondelle R and Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8: 793–807

    PubMed  Google Scholar 

  • Van Grondelle R, Bergström H, Sundström V and Gillbro T (1987) Energy transfer within the bacteriochlorophyll antenna of purple bacteria at 77 K, studied by picosecond absorption recovery. Biochim Biophys Acta 894: 313–326

    Google Scholar 

  • Van Mourik F, Visschers RW and Van Grondelle R (1992) Energy transfer and aggregate size effects in the inhomogeneously broadened core light-harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1–7

    Google Scholar 

  • Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1998) Spectroscopy of single light-harvesting complexes from purple photosynthetic bacteria at 1.2 K. J Phys Chem B 102: 9363–9366

    Google Scholar 

  • Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400–402

    PubMed  Google Scholar 

  • Visschers RW, Germeroth L, Michel H, Monshouwer R and Van Grondelle R (1995) Spectroscopic properties of the light-harvesting complexes from Rhodospirillum molischianum. Biochim Biophys Acta 1230: 147–154

    PubMed  Google Scholar 

  • Vredenberg WJ and Duysens LMN (1963) Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature 4865: 355–357

    Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. J Mol Biol 282: 833–845

    PubMed  CAS  Google Scholar 

  • Wu H-M and Small GJ (1998) Symmetry-based analysis of the effects of random energy disorder on the excitonic level structure of cyclic arrays: Application to photosynthetic antenna complexes. J Phys Chem B 102: 888–898

    CAS  Google Scholar 

  • Wu H-M, Rätsep M, Jankowiak R, Cogdell RJ and Small GJ (1997a) Comparison of the LH2 antenna complexes of Rhodopseudomonas acidophila (strain 10050) and Rhodobacter sphaeroides by high-pressure absorption, high-pressure hole burning, and temperature-dependent absorption spectroscopies. J Phys Chem B 101: 7641–7653

    CAS  Google Scholar 

  • Wu H-M, Rätsep M, Lee I-J, Cogdell RJ and Small GJ (1997b) Exciton level structure and energy disorder of the B850 ring of the LH2 antenna complex. J Phys Chem B 101: 7654–7663

    CAS  Google Scholar 

  • Zhang FG, Van Grondelle R and Sundström V (1992) Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium Rhodobacter sphaeroides. Biophys J 61: 911–920

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Freiberg, A., Trinkunas, G. (2009). Unraveling the Hidden Nature of Antenna Excitations. In: Laisk, A., Nedbal, L., Govindjee (eds) Photosynthesis in silico . Advances in Photosynthesis and Respiration, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9237-4_4

Download citation

Publish with us

Policies and ethics