Skip to main content

Quantitative Assessment of Colorectal Cancer Perfusion: Perfusion Computed Tomography and Dynamic Contrast Enhanced Magnetic Resonance Imaging

  • Chapter
Colorectal Cancer

Part of the book series: Methods of Cancer Diagnosis, Therapy, and Prognosis ((HAYAT,volume 4))

  • 2076 Accesses

Clinical interest in perfusion imaging for cancer has gained impetus in recent years due to developing clinical need and to technological advances that have facili tated such imaging. In oncology this has been driven by the development of drugs targeted at the tumor vasculature. Conven tional assessment of the therapeutic efficacy of such anti-angiogenic and anti-vascular drugs has been shown to be of limited value in recent clinical trials. Such assess ment is based on size change, e.g., Response Evaluation Criteria in Solid Tumours (RECIST) or World Health Organisation (WHO) criteria, yet these drugs may not necessarily cause tumor shrinkage. For example, a 5 month improvement in over all survival was reported in a Phase III study of patients with metastatic color-ectal cancer, treated with conventional chemotherapy, and bevacizumab (Avastin; Genentech, San Francisco, CA, USA), a drug targeted against vascular endothelial growth factor; however, this was accompa nied by an increase in objective response rate of only 10% (Hurwitz et al., 2004). While time-to-progression is probably the best method of assessing drug efficacy as it reflects disease stability, a disadvantage of using such progression as an endpoint in clinical trials is that large patient num bers may be needed, and such studies are expensive. Furthermore, patients could be treated potentially with ineffective drugs for prolonged periods. Perfusion imaging techniques such as perfusion computed tomography (CT) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) have been promoted particu larly for early clinical studies (phase I and II) as these techniques may provide in vivo pharmacodynamic information. Such information may help in dose selection and scheduling, and in supporting deci sions to take new therapeutic compounds forward to larger phase clinical studies with efficacy endpoints.

Both perfusion CT and DCE-MRI are attractive imaging techniques as they com bine functional information regarding the tumor vasculature with good anatomical detail. Computed Tomography and MRI are widely available, and these perfusion techniques, which are based on contrast media enhancement, can be incorporated relatively easily into standard imaging protocols. Both qualitative and quantita tive information of tissue vascularity can be obtained. Using mathematical model ling to generate quantitative perfusion measurements, these techniques may dem onstrate the increased vascular volume and flow within tumors, display the spa tial and temporal heterogeneity of per-fusion, demonstrate the hyperpermeability of the tumor vasculature, and provide a surrogate measure of tissue hypoxia. Of course, there are differences between tech niques that should be taken into account. For example, a simple linear relationship exists between tissue enhancement and contrast concentration with CT, and quan tification is relatively straightforward. In contrast, the signal intensity change with MRI is dependent on many factors, and not necessarily proportional to contrast dose, thus greater care has to be taken with quantitative perfusion assessment using DCE-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blomley, M.J., Coulden, R., Dawson, P., Kormano, M., Donlan, P., Bufkin, C., and Lipton, M.J. 1995. Liver perfusion studied with ultrafast CT. J. Comput. Assist. Tomogr. 19: 424–433.

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist, L., Fransson, P., and Hindmarsh, T. 1998. The pelvis after surgery and chemo-radiotherapy for rectal cancer studied with Gd-DTPA enhanced fast dynamic MR imaging. Eur. Radiol. 8: 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, D.L., Drew, P.J., Mussurakis, S., Monson, J.R., and Horsman, A. 1997. Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J. Magn. Reson. Imaging 7: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Cenic, A., Nabavi, D.G., Craen, R.A., Gelb, A.W., and Lee, T.Y. 2000. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. Am. J. Neuroradiol. 21: 462–470.

    PubMed  CAS  Google Scholar 

  • Chintapalli, K.N., Chopra, S., Ghiatas, A.A., Esola, C.C., Fields, S.F., and Dodd, G.D. 3rd. 1999. Diverticulitis versus colon cancer: differentia tion with helical CT findings. Radiology 210: 429–435.

    PubMed  CAS  Google Scholar 

  • Cuenod, C., Leconte, I., Siauve, N., Resten, A., Dromain, C., Poulet, B., Frouin, F., Clement, O., and Frija, G. 2001. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 218: 556–561.

    PubMed  CAS  Google Scholar 

  • Daldrup, H.E., Shames, D.M., Husseini, W., Wendland, M.F., Okuhata, Y., and Brasch, R.C. 1998. Quantification of the extraction fraction for gadopentate across breast cancer capillaries. Magn. Reson. Med. 40: 537–543.

    Article  PubMed  CAS  Google Scholar 

  • Daldrup-Link, H.E., Rydland, J., Helbich, T.H., Bjornerud, A., Turetschek, K., Kvistad, K.A., Kaindl, E., Link, T.M., Staudacher, K., Shames, D., Brasch, R.C., Haraldseth, O., and Rummeny, E.J. 2003. Quantification of breast tumor micro-vascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology 229: 885–892.

    Article  PubMed  Google Scholar 

  • Dawson, P. 1997 Contrast agents as tracers. In: Miles KA, Dawson P, Hayball MP, eds. Functional Computed Tomography. Oxford, UK: Isis Medical Media: pp 29–45.

    Google Scholar 

  • De Lussanet, Q.G., Backes, W.H., Griffioen, A.W., van Engelshoven, J.M., and Beets-Tan, R.G. 2003. Gadopentetate dimeglumine versus ultrasmall superparamagnetic iron oxide for dynamic con trast-enhanced MR imaging of tumor angiogen-esis in human colon carcinoma in mice. Radiology 229: 429–438.

    Article  PubMed  Google Scholar 

  • De Vries, A., Griebel, J., Kremser, C., Judmaier, W., Gneiting, T., Debbage, P., Kremser, T., Pfeiffer, K.P., Buchberger, W., and Lukas, P. 2000. Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implica tions for therapy. Radiology 217: 385–391.

    PubMed  Google Scholar 

  • De Vries, A.F., Griebel, J., Kremser, C., Judmeier, W., Gneiting, T., Kreczy, A., Ofner, D., Pfeiffer, K.P., Brix, G., and Lukas, P. 2001. Tumor microcircula-tion evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res. 61: 2513–2516.

    Google Scholar 

  • Fiorella, D., Heiserman, J., Prenger, E., and Partovi, S. 2004. Assessment of the reproducibility of postprocessing dynamic CT perfusion data. Am. J. Neuroradiol. 25: 97–107.

    PubMed  Google Scholar 

  • Fournier, L.S., Cuenod, C.A., de Balazaire, C., Siauve, N., Rosty, C., Tran, P.L., Frija, G., and Clement, O. 2004. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool agent. Eur. Radiol. 14: 2125–2133.

    Article  PubMed  Google Scholar 

  • Funama, Y., Awai K., Nakayama, Y., Kakei, K., Nagasue, N., Shimamura, M., Sato, N., Sultana, S., Morishita, S., and Yamashita, Y. 2005. Radiation dose reduction without degradation of low-contrast detectability at abdominal mul-tisection CT with a low-tube voltage technique: phantom study. Radiology 237: 905–910.

    Article  PubMed  Google Scholar 

  • Galbraith, S.M., Lodge, M.A., Taylor, N.J., Rustin, G.J., Bentzen, S., Stirling, J.J., and Padhani, A.R. 2002. Reproducibility of dynamic contrast enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed. 15: 132–142.

    Article  PubMed  Google Scholar 

  • Galbraith S.M., Maxwell, R.J., Lodge, M.A., Tozer, G.M., Wilson, J., Taylor, N.J., Stirling, J.J., Sena, L., Padhani, A.R., and Rustin, G.J. 2003. Combretastatin A4 phosphate has tumor antivas-cular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J. Clin. Oncol. 21: 2831–2842.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barros, M., Paris, F., Cordon-Cardo, C., Lyden, D., Rafii, S., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. 2003. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300: 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  • George, M.L., Dzik-Jurasz, A.S., Padhani, A.R., Brown, G., Tait, D.M., Eccles, S.A., and Swift, R.I. 2001. Non invasive methods of assess ing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br. J. Surg. 88: 1628–1636

    Article  PubMed  CAS  Google Scholar 

  • Gerlowski, L.E., and Jain, R.K. 1986. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31: 288–305.

    Article  PubMed  CAS  Google Scholar 

  • Gillard, J.H., Minhas, P.S., Hayball, M.P., Bearcroft, P.W., Antoun, N.M., Freer, C.E., Mathews, J.C., Miles, K.A., and Pickard, J.D. 2000. Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emis sion tomography. Neurol. Res. 22: 457–464.

    PubMed  CAS  Google Scholar 

  • Goh, V., Halligan, S., Hugill, J.A., Gartner, L., and Bartram, C.I. 2005a. Colorectal cancer perfusion measurement using dynamic contrast enhanced MDCT: effect of acquisition time and implica tions for protocols. J. Comput. Assist. Tomogr. 21: 4881–4885.

    Google Scholar 

  • Goh, V., Halligan, S., Hugill, J.A., and Bartram, C.I. 2005b. Quantitative colorectal cancer perfusion measurements using MDCT: inter and intra-observer agreement. AJR Am. J. Roentogenol. 185: 225–231.

    Google Scholar 

  • Goh, V., Halligan, S., Wellsted, D., and Bartram, C.I. 2008b. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? - Pilot Study. Eur Radiol. August 14 Epub.

    Google Scholar 

  • Goh, V., Halligan, S., and Bartram, C.I. 2007a. Quantitative tumor perfusion assessment using MDCT: Are measurements from two different commerical software packages interchangeable? Radiology 242: 777–782.

    Article  Google Scholar 

  • Goh, V., Halligan, S., Hugill, J.A., and Bartram, C.I. 2006. Quantitative assessment of tissue perfusion using MDCT: comparison of colorectal cancer and skeletal muscle measurement reproducibil-ity. AJR. Am. J. Roentgenol. 187: 164–169.

    Article  PubMed  Google Scholar 

  • Goh, V., Halligan, S., Daley, F., Guenther, T., Wellsted, D., and Bartram, C.I. 2008a. Assessment of colorectal cancer vascularity: Quantitative assessment with MDCT — Do tumor perfusion measurements reflect angiogenesis? Radiology September 23 Epub

    Google Scholar 

  • Goh, V., Halligan, S., Taylor, S.A., Burling, D., Bassett, P., and Bartram, C.I. 2007b. Diverticulitis versus colorectal cancer: are CT perfusion meas urements better discriminators than morphologi cal criteria. Radiology 242: 456–462.

    Article  Google Scholar 

  • Harvey, C., Dooher, A., Morgan, J., Blomley, M., and Dawson, P. 1999. Imaging of tumor therapy responses by dynamic CT. Eur. J. Radiol. 30: 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Hawighorst, H., Weikel, W., Knapstein, P.G., Knopp, M.V., Zuna, I., Schonberg, S.O., Vaupel, P., and van Kaick, G. 1998. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correla tion with disease outcome. Clin. Cancer Res. 4: 2305–2312.

    PubMed  CAS  Google Scholar 

  • Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., and Kabbinavar, F. 2004. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350: 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  • Iinuma, G., Moriyama, N., Satake, M., Miyakawa, K., Tateishi, U., Uchiyama, N., Akasu, T., Fujii T., and Kobayashi, T. 2005. Vascular virtual endolu-minal visualization of invasive colorectal cancer on MDCT colonography. AJR Am. J. Roentgenol. 184: 1194–1198.

    PubMed  Google Scholar 

  • Johnson, J.A., and Wilson, T.A. 1966. A model for cap illary exchange. Am. J. Physiol. 210: 1299–1303.

    PubMed  CAS  Google Scholar 

  • Kety, S.S. 1951. The theory and application of the exchange of inert gas at the lungs and tissue. Pharmacol. Rev. 3: 1–41.

    PubMed  CAS  Google Scholar 

  • Kim, J.H., Kim, H.J., Lee, K.H., Kim, K.H., and Lee, H.L. 2004. Solitary pulmonary nodules: a comparative study evaluating contrast enhanced dynamic MR imaging and CT. J. Comput. Assist. Tomogr. 28: 766–775.

    Article  PubMed  Google Scholar 

  • Kinkel, K., Tardivon, A.A., Soyer, P., Spatz, A., Lasser, P., Rougier, P., and Vanel, D. 1996. Dynamic contrast-enhanced subtraction versus T2-weighted spin-echo MR imaging in the fol low-up of colorectal neoplasm: a prospective study of 41 patients. Radiology 200: 453–458.

    PubMed  CAS  Google Scholar 

  • Lankester, K.J., Taylor, N.J., Stirling, J.J., Boxall, J., D'Arcy, J.A., Leach, M.O., Rustin, G.J., and Padhani, A.R. 2005. Effects of platinum/ taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI. Br. J. Cancer 93: 979–985.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.Y., Purdie, T.G., and Stewart, E. 2003. CT imaging of angiogenesis. Q. J. Nucl. Med. 47: 171–187.

    PubMed  Google Scholar 

  • Leen, E., Goldberg, J.A., Robertson, J., Angerson, W.J., Sutherland, G.R., Cooke, T.G., and McArdle, C.S. 1993. Early detection of occult colorectal hepatic metastases using duplex colour Doppler sonography. Br. J. Surg. 80: 1249–1251.

    Article  PubMed  CAS  Google Scholar 

  • Leggett, D.A., Kelley, B.B., Bunce, I.H., and Miles, K.A. 1997. Colorectal cancer: diagnostic potential of CT measurements of hepatic per-fusion and implications for contrast enhance ment protocols. Radiology 205: 716–720.

    PubMed  CAS  Google Scholar 

  • Li, Z.P., Meng, Q.F., Sun, C.H., Xu, D.S., Fan, M., Yang, X.F., and Chen, D.Y. 2005. Tumor angiogenesis and dynamic CT in colorectal can cer: Radiologic-pathologic correlation. World J. Gastroenterol. 11: 1287–1291.

    PubMed  Google Scholar 

  • Miles, K.A., and Griffiths, M.R. 2003. Perfusion CT: a worthwhile enhancement? Br. J. Radiol. 76: 220–231.

    Article  PubMed  CAS  Google Scholar 

  • Miles, K.A., Hayball, M.P., and Dixon, A.K. 1993. Functional images of hepatic perfusion obtained with dynamic CT. Radiology 188: 405–411.

    PubMed  CAS  Google Scholar 

  • Miles, K.A., Leggett, D.A., Kelley, B.B., Hayball, M.P., Sinnatamby, R., and Bunce, I. 1998. In vivo assessment of neovascularization of liver metastases using perfusion CT. Br. J. Radiol. 71: 276–281.

    PubMed  CAS  Google Scholar 

  • Moeller, B.J., Cao, Y., Li, C.Y., and Dewhirst, M.W. 2004. Radiation activates HIF-1 to regu late vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell 5: 429–441.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, B., Thomas, A.L., Drevs, J., Hennig, J., Buchert, M., Jivan, A., Horsfield, M.A., Mross, K., Ball, H.A., Lee L., Mietlowski, W., Fuxuis,S., Unger, C., O'Byrne, K., Henry, A., Cherryman, G.R., Laurent, D., Dugan, M., Marme, D., and Steward, W.P. 2003. Dynamic contrast enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothe-lial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I stud ies. J. Clin. Oncol. 21: 3955–3964.

    Article  PubMed  CAS  Google Scholar 

  • Muller-Schimpfle, M., Brix. G., Layer, G., Schlag, P., Engenhart, R., Frohmuller, S., Hess, T., Zuna I., Semmler, W., and van Kaick, G. 1993. Recurrent rectal cancer: diagnosis with dynamic MR imaging. Radiology 189: 881–889.

    PubMed  CAS  Google Scholar 

  • Nabavi, D.G., Cenic, A., Dool, J., Smith, R.M., Espinosa, F., Craen, R.A., Gelb, A.W., and Lee, T.Y. 1999. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J. Comput. Assist. Tomogr. 23: 506–515.

    Article  PubMed  CAS  Google Scholar 

  • Ng, Q.S., Goh, V., Klotz, E., Fichte, H., Fernie, P., Saunders, M., Hoskin, P., and Padhani, A.R. 2006. Quantitative assessment of lung cancer perfusion using MDCT: reproducibility of a whole tumor analysis technique. Radiology 239: 533–547.

    Article  Google Scholar 

  • Patlak, C.S., Blasberg, R.G., and Fenstermacher, J.D. 1983. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3: 1–7.

    PubMed  CAS  Google Scholar 

  • Pena, L.A., Fuks, Z., and Kolesnick, R.N. 2000. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 60: 321–327.

    PubMed  CAS  Google Scholar 

  • Purdie, T.G., Henderson, E., and Lee, T.Y. 2001. Functional CT imaging of angiogenesis in rab bit VX2 soft-tissue tumor. Phys. Med. Biol. 46: 3161–3175.

    Article  PubMed  CAS  Google Scholar 

  • Rudisch, A., Kremser, C., Judmaier, W., Zunterer, H., and DeVries, A.F. 2005. Dynamic con trast-enhanced magnetic resonance imaging: a non-invasive method to evaluate significant dif ferences between malignant and normal tissue. Eur. J. Radiol. 53: 514–519.

    Article  PubMed  Google Scholar 

  • Sahani, D.V., Kalva, S.P., Hamberg, L.M., Hann, P.F., Willett, C.G., Saini, S., Mueller, P.R., and Lee, T.Y. 2005. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234: 785–792.

    Article  PubMed  Google Scholar 

  • Semelka, R.C., Hussain, S.M., Marcos, H.B., and Woosley, J.T. 2000. Perilesional enhancement of hepatic metastases: correlation between MR imaging and histopathologic findings-initial observations. Radiology 215: 89–94.

    PubMed  CAS  Google Scholar 

  • Simon, G.H., Fu, Y., Berejnoi, K., Fournier, L.S., Lucidi, V., Yeh, B., Shames, D.M., and Brasch, R.C. 2005. Initial computed tomography imag ing experience using a new macromolecular iodinated contrast medium in experimental breast cancer. Invest. Radiol. 40: 614–620.

    Article  PubMed  Google Scholar 

  • Su, M.Y., Cheung, Y.C., Fruehauf, J.P., Yu, H., Nalcioglu, O., Mechetner, E., Kyshtoobayeva, A., Chen, S.C., Hsueh, S., McLaren, C.E., and Wan, Y.L. 2003. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogen-esis in breast cancer. J. Magn. Reson. Imaging 18: 467–477.

    Article  PubMed  Google Scholar 

  • Tateishi, U., Kusumoto, M., Nishihara, H., Nagashima, K., Morikawa, T., and Moriyama, N. 2002. Contrast enhanced dynamic computed tomography for the evaluation of angiogenesis in patients with lung carcinoma. Cancer 95: 835–842.

    Article  PubMed  Google Scholar 

  • Thomas, A.L., Morgan, B., Horsfield, M.A., Higginson, A., Kay, A., Lee, L., Masson, E., Puccio-Pick, M., Laurent, D., and Steward, W.P. 2005. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J. Clin. Oncol. 23: 4162–4171.

    Article  PubMed  CAS  Google Scholar 

  • Tofts, P.S. 1997. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 7: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B., Lee, T.Y., Mayr, N.A., Parker, G.J., Port, R.E., Taylor, J., and Weisskoff, R.M. 1999. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: stand ardized quantaties and symbols. J. Magn. Reson. Imaging 10: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Tomisaki, S., Ohno, S., Ichiyoshi, Y., Kuwano, H., Maehara, Y., and Sugimachi, K. 1996. Microvessel quantification and its possible rela tion with liver metastasis in colorectal cancer. Cancer 77: 1722–1728.

    PubMed  CAS  Google Scholar 

  • Totman, J.J., O'Gorman, R.L., Kane, P.A., and Karani, J.B. 2005. Comparison of the hepatic per-fusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br. J. Radiol. 78: 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Tuncbilek, N., Karakas, H.M., and Altaner, S. 2004. Dynamic MRI in indirect estimation of microvessel density, histologic grade, and prog nosis in colorectal adenocarcinomas. Abdom. Imaging 29: 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Turetschek, K., Huber, S., Floyd, E., Helbich, T., Roberts, T.P., Shames, D.M., Tarlo, K.S., Wendland, M.F., and Brasch, R.C. 2001. MR imaging characterization of microvessels in experimental breast tumors by using a particu-late contrast agent with histopathologic correla tion. Radiology 218: 562–569

    PubMed  CAS  Google Scholar 

  • Turetschek, K., Preda, A., Novikov, V., Brasch, R.C., Weinmann, H.J., Wunderbaldinger, P., and Roberts, T.P. 2004. Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of differ ent molecular weights. J. Magn. Reson. Imaging 20: 138–144.

    Article  PubMed  Google Scholar 

  • Ueda, T., Suito, H., and Minami, M. 2006. Functional CT imaging with assessment of tumor induced angiogenesis: The full solution of Patlak two-compartment modelling using a computer-discretization approach [abstract]. Presented at ECR, Vienna, Austria.

    Google Scholar 

  • Va n Dijke, C.F., Brasch, R.C., Roberts, T.P., Weidner, N., Mathur, A., Shames, D.M., Mann, J.S., Demsar, F., Lang, P., and Schwickert, H.C. 1996. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198: 813–818.

    PubMed  Google Scholar 

  • Vaupel, P. 2000 Tumor blood flow. In: Molls M and Vaupel P, eds. Blood Perfusion and Micro environment of Human Tumors: Implications for Clinical Radiooncology. Berlin, Germany: Springer: pp 41–45.

    Google Scholar 

  • Willett, C.G., Boucher, Y., Di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., and Jain, R.K. 2004. Direct evidence that the VEGF-specific antibody beva-cizumab has antivascular effects in human rectal cancer. Nat. Med. 10: 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Wintermark, M., Thiran, J.P., Maeder, P., Schnyder, P., and Meuli, R. 2001. Simultaneous measure-ment of regional cerebral blood flow by per-fusion CT and stable xenon CT: a validation study. Am. J. Neuroradiol. 22: 905–914.

    PubMed  CAS  Google Scholar 

  • Yi, C.A., Lee, K.S., Kim, E.A., Han, J., Kim, H., Kwon, O.J., Jeong, Y.J., and Kim, S. 2004. Solitary pulmonary nodules: dynamic enhanced multidetector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233: 191–199.

    Article  PubMed  Google Scholar 

  • Zhang, M., and Kono, M. 1997. Solitary pul monary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205: 471–478.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Goh, V. (2009). Quantitative Assessment of Colorectal Cancer Perfusion: Perfusion Computed Tomography and Dynamic Contrast Enhanced Magnetic Resonance Imaging. In: Hayat, M.A. (eds) Colorectal Cancer. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9545-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9545-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9544-3

  • Online ISBN: 978-1-4020-9545-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics