Skip to main content

Reverse Hall–Petch Effect in Ultra Nanocrystalline Diamond

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

Abstract

We present atomistic simulations for the mechanical response of ultra nanocrystalline diamond, a polycrystalline form of diamond with grain diameters of the order of a few nm. We consider fully three-dimensional model structures, having several grains of random sizes and orientations, and employ state-of-the-art Monte Carlo simulations. We calculate structural properties, elastic constants and the hardness for this material; our results compare well with experimental observations. Moreover, we verify that this material becomes softer at small grain sizes, in analogy to the observed reversal of the Hall—Petch effect in various nanocrystalline metals. The effect is attributed to the large concentration of grain boundary atoms at smaller grain sizes. Our analysis yields scaling relations for the elastic constants as a function of the average grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bata V, Pereloma EV (2004) An alternative physical explanation of the Hall—Petch relation. Acta Mater 52:657–665.

    Article  CAS  Google Scholar 

  2. Brazhkin VV, Lyapin AG, Hemley RJ (2002) Harder than diamond: Dreams and reality. Philos Mag A 82:231–253.

    Article  ADS  CAS  Google Scholar 

  3. Demkowicz MJ, Argonz AS, Farkas D, Frary M (2007) Simulation of plasticity in nanocrys talline silicon. Philos Mag 87:4253–4271.

    Article  ADS  CAS  Google Scholar 

  4. Dubrovinskaia N, Solozhenko VL, Miyajima N, Dmitriev V, Kurakevych OO, Dubrovinsky L (2007) Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness. Appl Phys Lett 90:101912.

    Article  ADS  CAS  Google Scholar 

  5. Espinosa HD, Peng B, Moldovan N, Friedmann TA, Xiao X, Mancini DC, Auciello O, Carlisle J, Zorman CA, Merhegany M (2006) Elasticity, strength and toughness of single crystal silicon carbide, ultrananocrystalline diamond and hydrogen-free tetrahedral amorphous carbon. Appl Phys Lett 89:073111.

    Article  ADS  CAS  Google Scholar 

  6. Fyta MG, Remediakis IN, Kelires PC, Papaconstantopoulos DA (2006) Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon. Phys Rev Lett 96:185503.

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Gao FM, He JL, Wu ED, Liu SM, Yu DL, Li DC, Zhang SY, Tian YJ (2003) Hardness of covalent crystals. Phys Rev Lett 91:015502.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259.

    Article  CAS  Google Scholar 

  9. Kaner RB, Gilman JJ, Tolbert SH (2005) Materials science — Designing superhard materials. Science 308:1268–1269.

    Article  PubMed  CAS  Google Scholar 

  10. Keblinski P, Phillpot SR, Wolf D, Gleiter H (1999) On the nature of grain boundaries in nanocrystalline diamond. Nanostruct Mater 12:339–344.

    Article  Google Scholar 

  11. Kelires PC (1994) Elastic properties of amorphous-carbon networks. Phys Rev Lett 73:2460– 2463.

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Kelires PC (2000) Intrinsic stress and local rigidity in tetrahedral amorphous carbon. Phys Rev B 62:15686–15694.

    Article  ADS  CAS  Google Scholar 

  13. Kopidakis G, Remediakis IN, Fyta MG, Kelires PC (2007) Atomic and electronic structure of crystalline-amorphous carbon interfaces. Diam Relat Mater 16:1875–1881.

    Article  CAS  Google Scholar 

  14. Krauss AR, Auciello O, Gruen DM, Jayatissa A, Sumant A, Tucek J, Mancini DC, Moldovan N, Erdemir A, Ersoy D, Gardos MN, Busmann HG, Meyer EM, Ding MQ (2001) Ultra-nanocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam Relat Mater 10:1952–1961.

    Article  CAS  Google Scholar 

  15. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Progr Mater Sci 51:427–556.

    Article  CAS  Google Scholar 

  16. Pantea C, Zhang J, Qian J, Zhao Y, Migliori A, Grzanka E, Palosz B, Wang Y, Zerda TW, Liu H, Ding Y, Stephens PW, Botez CE (2006) Nano-diamond compressibility at pressures up to 85 GPa, in 2006 NSTI Nanotechnology Conference and Trade Show, pp 823–826.

    Google Scholar 

  17. Remediakis IN, Fyta MG, Mathioudakis C, Kopidakis G, Kelires PC (2007) Structure, elastic properties and strength of amorphous and nanocomposite carbon. Diam Relat Mater 16:1835– 1840.

    Article  CAS  Google Scholar 

  18. Robertson J (2002) Diamond-like amorphous carbon. Mat Sci Eng R 37:129–281.

    Article  Google Scholar 

  19. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563.

    Article  ADS  Google Scholar 

  20. Schiotz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Szlufarska I, Nakano A, Vashishta P (2005) A crossover in the mechanical response of nanocrystalline ceramics. Science 309:911–914.

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous-carbon. Phys Rev Lett 61:2879–2882.

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22–25.

    Article  ADS  Google Scholar 

  24. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47.

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Yip S (1998) Nanocrystals – The strongest size. Nature 391:532–533.

    Article  ADS  CAS  Google Scholar 

  26. Zapol P, Sternberg M, Curtiss LA, Frauenheim T, Gruen DM (2002) Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys Rev B 65:045403.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Remediakis, I.N., Kopidakis, G., Kelires, P.C. (2009). Reverse Hall–Petch Effect in Ultra Nanocrystalline Diamond. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_18

Download citation

Publish with us

Policies and ethics