Skip to main content

Discrete-Continuum Transition in Modelling Nanomaterials

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

  • 1828 Accesses

Abstract

In the present investigation we elaborate on the development of a second-order elastic deformation gradient in discrete/atomistic system. Whereas kinematics are typically characterized by the Cauchy—Born rule that enforces homogeneous deformation, the second-order deformation gradient allows to capture highly non-homogeneous deformations. This is particularly important in disordered molecular systems where nonaffine deformations are responsible for the mechanical behaviour of nanomaterials. The local inhomogeneity measure has been defined to determine variability of the deformation field of nanostructures under loading. Several application examples have been worked out comprising fullerene structures, diamond plates and nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, M., Griebel, M.: Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale. Model. Simul. 4, 531–562 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, Y., Lee, J.D., Eskandarian, A.: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Engng. Sci. 41, 61–83 (2003).

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., lee, J.D., Eskandarian, A.: Atomistic counterpart of micromorphic theory. Acta Mech. 161, 81–102 (2003).

    Article  MATH  Google Scholar 

  4. Cormier, J., Rickman, J.M., Delph, T.J.: Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys. 89, 99–104 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Delph, T.J.: Conservation laws for multibody interatomic potentials. Modelling Simul. Mater. Sci. Eng. 13, 585–594 (2005).

    Article  ADS  Google Scholar 

  6. DiDonna, B.A., Lubensky, T.C.: Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005).

    Article  ADS  CAS  Google Scholar 

  7. Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E. 57, 7192–7205 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Guo, W., Tang, C., Guo, Y.: Nanointelligent materials and systems. Int. J. Nanosci. 5, 671–676 (2006).

    Article  CAS  Google Scholar 

  9. Hardy, R.J.: Formulas for determining local properties in molecular dynamics simulations: Shock waves. J. Chem. Phys. 76, 622–628 (1982).

    Article  ADS  Google Scholar 

  10. Hatami-Marbini, H., Picu, R.C.: Scaling of nonaffine deformation in random semiflexible fiber networks. Phys. Rev. E 77, 062103 (2008).

    Article  ADS  CAS  Google Scholar 

  11. Head, D.A., Levine, A.J., MacKontosh, F.C.: Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003).

    Article  ADS  CAS  Google Scholar 

  12. Lam, D.C.C., Chong, A.C.M.: Effect of cross-link density on strain gradient plasticity in epoxy. Mat. Sci. Engng. A281, 156–161 (2000).

    CAS  Google Scholar 

  13. Leonforte, F., Boissière, R., Tanguy, A., Wittmer, J.P., Barrat, J.-L.: Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005).

    Article  ADS  CAS  Google Scholar 

  14. Lutsko, J.F.: Stress and elastic constants in anisotropic solids: Molecular dynamics techniques. J. Appl. Phys. 64, 1152–1154 (1988).

    Article  ADS  Google Scholar 

  15. Machová, A.: Stress calculations on the atomistic level. Modelling Simul. Mater. Sci. Eng. 9, 327–337 (2001).

    Article  ADS  Google Scholar 

  16. Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Maranganti, R., Sharma, P., Wheeler, L.: Quantum notion of stress. J. Aerospace Engng. 20, 22–37 (2007).

    Article  Google Scholar 

  18. Minot, E.D., Yaish, Y., Sazonova, V., Park, J-Y., Brink, M., McEuen, P.L.: Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Mott, P.H., Argon, A.S., Suter, U.W.: The atomic strain tensor. J. Comput. Phys. 101, 140–150 (1992).

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  20. Nakane, M., Shizawa, K., Takahashi, K.: Microscopic discussions of macroscopic balance equations for solids based on atomic configurations. Archiv Appl. Mech. 70, 533–549 (2000).

    Article  MATH  Google Scholar 

  21. Nikolov, S., Han, C.-S., Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. Int. J. Solids Struct. 44, 1582–1592 (2007).

    Article  MATH  CAS  Google Scholar 

  22. Nishioka, K., Takai, T., Hata, K.: Interpretation of the atomic formulae for stress and stiffness coefficients. Philosophical Mag. A 65, 227–244 (1992).

    Article  ADS  Google Scholar 

  23. Onck, P.R., Korman, T., van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Pyrz, R.: Properties of ZnO nanowires and functional nanocomposites. Int. J. Nanosci. 7, 29–35 (2008).

    Article  CAS  Google Scholar 

  25. Pyrz, R., Bochenek, B.: Atomic/continuum transition at interfaces of nanocomposite materials. Key Engng. Mat. 334–335, 657–660 (2007).

    Article  Google Scholar 

  26. Pyrz, R., Bochenek, B.: Discrete-continuum transition at interfaces of nanocomposites. Bull. Pol. Ac.: Tech. 55, 1–10 (2007).

    Google Scholar 

  27. Shen, H.: Tensile properties and electronic structures of C240 nanotube and 4C60 fullerene polymers. Int. J. Nanosci. 5, 99–107 (2006).

    Article  CAS  Google Scholar 

  28. Sunyk, R., Steinmann, P.: On higher gradients in continuum-atomistic modeling. Int. J. Solids Struct. 40, 6877–6896 (2003).

    Article  MATH  Google Scholar 

  29. Tanguy, A., Wittmer, J.P., Leonforte, F., Barrat, J-L.: Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations. Phys. Rev. B 66, 174205 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Thean, A., Leburton, J.P.: Strain effects in large silicon nanocrystal quantum dots. Appl. Phys. Lett. 79, 1030–1032 (2001).

    Article  ADS  CAS  Google Scholar 

  31. Thiel, W., Voityul, A.A.: Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group. J. Phys. Chem. 100, 616–626 (1996).

    Article  CAS  Google Scholar 

  32. Triantafyllidis, N., Bardenhagen, S.: On higher order gradient continuum theories in 1-D non-lonear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elast. 33, 259–293 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, X., Sharma, P.: Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects. Phys. Rev. B 72, 195345 (2005).

    Article  ADS  CAS  Google Scholar 

  34. Zhou, M.: A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc. R. Soc. Lond. A 459, 2347–2392 (2003).

    Article  MATH  ADS  CAS  Google Scholar 

  35. Zimmerman, J.A., Webb III, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., Bammann, D.J.: Calculation of stress in atomistic simulation. Modelling Simul. Mater. Sci. Eng. 12, S319–S332 (2004).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Pyrz, R., Bochenek, B. (2009). Discrete-Continuum Transition in Modelling Nanomaterials. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_8

Download citation

Publish with us

Policies and ethics