Skip to main content

Abstract

Classic bin packing seeks to pack a given set of items of possibly varying sizes into a minimum number of identical sized bins. A number of approximation algorithms have been proposed for this NP-hard problem for both the on-line and off-line cases. In this chapter we discuss fully dynamic bin packing, where items may arrive (Insert) and depart (Delete) dynamically. In accordance with standard practice for fully dynamic algorithms, it is assumed that the packing may be arbitrarily rearranged to accommodate arriving and departing items. The goal is to maintain an approximately optimal solution of provably high quality in a total amount of time comparable to that used by an off-line algorithm delivering a solution of the same quality.

This chapter focuses on three results relative to fully dynamic bin packing. The first shows that imposing a fixed constant upper bound on the number of items that can be moved between bins per Insert/Delete operation forces the competitive ratio to be at least 4/3, regardless of the running time allowed per Insert/Delete. The second is a fully dynamic approximation algorithm for bin packing that is \(\frac{5}{4}\) -competitive and that requires Θ(log n) time per Insert/Delete of an item. This competitive ratio of \(\frac{5}{4}\) is nearly as good as that of the best practical off-line algorithms. A critical component of this algorithm is that very small items will be bundled together and moved as a single unit. Finally, we show for partially dynamic bin packing (Inserts only) and any ε>0, there is an algorithm with competitive ratio 1+ε that runs amortized polylogarithmic time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation algorithms for bin packing. Information and Computation, 82(3):262–277, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical Report R-864, Coordinated Science Laboratory, University of Illinois, Urbana, IL, 1979.

    Google Scholar 

  3. E. G. Coffman, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM J. Comput., 12:227–258, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: An updated survey. In G. Ausiello, M. Lucertini and P. Serafini, editors, Algorithm Design for Computer System Design, pages 49–106. Springer, New York, 1984.

    Google Scholar 

  5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. McGraw–Hill/MIT Press, Cambridge, 2nd edition, 2001.

    MATH  Google Scholar 

  6. L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. In Proc. 33rd International Colloquium on Automata, Languages and Programming (ICALP), volume 1, pages 214–225. 2006.

    Google Scholar 

  7. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε in linear time. Combinatorica, 1(4):349–355, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. K. Friesen and M. A. Langston. Analysis of a compound bin packing algorithm. SIAM J. Discr. Math., 4(1):61–79, 1994.

    Article  MathSciNet  Google Scholar 

  9. G. Gambosi, A. Postiglione, and M. Talamo. New algorithms for on-line bin packing. In G. Aussiello, D. P. Bovet and R. Petreschi, editors, Algorithms and Complexity, Proceedings of the First Italian Conference, pages 44–59. World Scientific, Singapore, 1990.

    Google Scholar 

  10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  11. Z. Ivković. Fully dynamic approximation algorithms. PhD Thesis, University of Delaware, 1995.

    Google Scholar 

  12. Z. Ivković and E. L. Lloyd. A fundamental restriction on fully dynamic maintenance of bin packing. Inf. Proc. Lett., 59:229–232, 1996.

    Article  MATH  Google Scholar 

  13. Z. Ivković and E. L. Lloyd. Partially dynamic bin packing can be solved within 1+ε in (amortized) polylogarithmic time. Inf. Proc. Lett., 63:45–50, 1997.

    Article  Google Scholar 

  14. Z. Ivković and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being mostly myopic helps. SIAM J. Comput., 28(2):574–611, 1998.

    Article  MATH  Google Scholar 

  15. D. S. Johnson. Near-optimal bin packing algorithms. PhD Thesis, MIT, 1973.

    Google Scholar 

  16. D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8:272–314, 1974.

    MATH  MathSciNet  Google Scholar 

  17. D. S. Johnson and M. R. Garey. A 71/60 Theorem for bin packing. J. Complexity, 1:65–106, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput., 3(4):299–325, 1974.

    Article  MathSciNet  Google Scholar 

  19. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-packing problem. In Proc. 23rd IEEE Symposium on Foundations of Computer Science, pages 312–320, 1982.

    Google Scholar 

  20. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum, New York, 1972.

    Google Scholar 

  21. C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32:562–572, 1985.

    Article  MATH  Google Scholar 

  22. F. M. Liang. A lower bound for on-line bin-packing. Inf. Proc. Lett., 10:76–79, 1980.

    Article  MATH  Google Scholar 

  23. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin-packing in linear time. J. Algorithms, 3:305–326, 1989.

    Article  MathSciNet  Google Scholar 

  24. P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration. In Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP), pages 1111–1122, 2004.

    Google Scholar 

  25. A. C.-C. Yao. New algorithms for bin packing. J. ACM, 27(2):207–227, 1980.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Ivković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Ivković, Z., Lloyd, E.L. (2009). Fully Dynamic Bin Packing. In: Ravi, S.S., Shukla, S.K. (eds) Fundamental Problems in Computing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9688-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9688-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9687-7

  • Online ISBN: 978-1-4020-9688-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics