Skip to main content

Characteristic quantities and dimensional analysis

  • Chapter
Scientific Modeling and Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 68))

Abstract

Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham’s Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft N.W., Mermin N.D.: Solid State Physics. Holt, Rinehart and Winston, Austin (1976)

    Google Scholar 

  2. Barenblatt G.I.: Dimensional Analysis. Gordon and Breach, New York (1987)

    Google Scholar 

  3. Buckingham E.: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)

    Article  ADS  Google Scholar 

  4. Dyer, K.M., Pettitt, B.M., Stell, G.: Systematic investigation of theories of transport in the Lennard-Jones fluid. J. Chem. Phys. 126, 034502/1–034502/9 (2007)

    Article  ADS  Google Scholar 

  5. Fisk Z., Webb G.W.: Saturation of the high-temperature normal-state electrical resistivity of superconductors. Phys. Rev. Lett. 36, 1084–1086 (1976)

    Article  ADS  Google Scholar 

  6. Gilman, Y., Allen, P.B., Tahir-Kheli, J., Goddard, W.A., III.: Numerical resistivity calculations for disordered three-dimensional metal models using tight-binding Hamiltonians. Phys. Rev. B 70, 224201/1–224201/3 (2004)

    Article  ADS  Google Scholar 

  7. Gilvarry J.J.: The Lindemann and Grüneisen laws. Phys. Rev. 102, 308–316 (1956)

    Article  ADS  Google Scholar 

  8. Goren S.L.: The instability of an annular thread of fluid. J. Fluid Mech. 12, 309–319 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Granger R.A.: Fluid Mechanics. Dover, New York (1985)

    Google Scholar 

  10. Grimvall G.: Transport properties of metals and alloys. Physica 127B, 165–169 (1984)

    Google Scholar 

  11. Grimvall, G.: Thermophysical Properties of Materials. Enlarged and revised edition. North-Holland (1999)

    Google Scholar 

  12. Gunnarsson O., Calandra M., Han J.E.: Colloquium: saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003)

    Article  ADS  Google Scholar 

  13. Jones J.E.: On the determination of molecular fields—II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924)

    Article  ADS  Google Scholar 

  14. Kihara T., Koba S.: Crystal structures and intermolecular forces of rare gases. J. Phys. Soc. Jpn. 7, 348–354 (1952)

    Article  ADS  Google Scholar 

  15. Kittel C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)

    Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Elsevier (1987)

    Google Scholar 

  17. Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  18. Lindemann F.A.: Molecular frequencies. Physik. Zeits. 11, 609–612 (1910)

    Google Scholar 

  19. Mooij J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Stat. Solidi A 17, 521–530 (1973)

    Article  ADS  Google Scholar 

  20. Slack G.A.: The thermal conduction of a non-metallic crystal. In: Ehrenreich, H., Seitz, F., Turnbull, D.(eds) Solid State Physics, vol. 34, pp. 1–71. Academic Press, New York (1979)

    Google Scholar 

  21. Stillinger F.H.: Lattice sums and their phase diagram implications for the classical Lennard-Jones model. J. Chem. Phys. 115, 5208–5212 (2001)

    Article  ADS  Google Scholar 

  22. Szirtes T.: Applied Dimensional Analysis and Modeling. McGraw-Hill, New York (1998)

    MATH  Google Scholar 

  23. Taylor E.S.: Dimensional Analysis for Engineers. Clarendon Press, Oxford (1974)

    Google Scholar 

  24. Thompson, D.W. In: Bonner, J.T. (ed.) On Growth and Form, Abridged edn. Cambridge University Press, Cambridge (1961)

    Google Scholar 

  25. Timoshenko S.: Strength of Materials. Part II. Advanced Theory and Problems. McMillan, New York (1930)

    Google Scholar 

  26. Timoshenko S.: Strength of Materials. Part I. Elementary Theory and Problems. McMillan, New York (1930)

    Google Scholar 

  27. Wiesmann H., Gurvitch M., Lutz H., Ghosh A., Schwarz B., Strongin M., Allen P. B., Halley J.W.: Simple model for characterizing the electrical resistivity in A-15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977)

    Article  ADS  Google Scholar 

  28. Wolf G.H., Jeanloz R.: Lindemann melting law: anharmonic correction and test of its validity for minerals. J. Geophys. Res. 89, 7821–7835 (1984)

    Article  ADS  Google Scholar 

  29. Zeller R.C., Pohl R.O.: Thermal conductivity and specific heat of non-crystalline solids. Phys. Rev. B 4, 2029–2041 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Grimvall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grimvall, G. (2008). Characteristic quantities and dimensional analysis. In: Yip, S., de la Rubia, T.D. (eds) Scientific Modeling and Simulations. Lecture Notes in Computational Science and Engineering, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9741-6_4

Download citation

Publish with us

Policies and ethics