Skip to main content

A Profile of Auditory Forebrain Connections and Circuits

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Establishing rules for auditory information processing requires knowledge of the physiology of the neurons, their connections, and of how local circuits shape signals. When available, as in the cochlear nucleus (Cant and Benson 2003), such profiles underlie plausible models of receptive field (RF) genesis (Davis and Young 2000), serial information transfer (Smith et al. 1993), and feature detection (Nelken 2002). Progress in this endeavor in the medial geniculate body (MGB) and auditory cortex (AC) since 1990 is the subject of this review, and it is prerequisite to understanding how auditory thalamic (Senatorov and Hu 2002), cortical (de Ribaupierre 1997; Rouiller and Welker 2000), and subcortical sites (Winer 2006) interact. A second theme is the function of massive, focal, and precise corticocortical (Lee and Winer 2005) and corticofugal (Winer 2006) projections. The emerging picture of multiple ascending and descending pathways with intricate convergence and divergence patterns (Smith and Spirou 2002) and robust interneuronal substrates for modulation (Huang et al. 1999) is at odds with more serial models of information flow (Brandner and Redies 1990). Each section summarizes views prevailing circa 1990, then assesses subsequent studies in cat, rodents, bats, and primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

amygdala, anterior nucleus

AAF:

anterior auditory field

ABm:

basomedial nucleus of the amygdala

ACe:

central nucleus of the amygdala

AD:

anterior part of the DCN

AES:

anterior ectosylvian area

aes:

anterior ectosylvian sulcus

AI:

primary auditory cortex

AlP:

anterolateral periolivary nucleus

APt:

anterior pretectum

AII:

second auditory cortex

AM:

anterior medial nucleus

AV:

anterior ventral thalamic nucleus

AV:

anteroventral cochlear nucleus

Ava:

anteroventral cochlear nucleus, anterior part

BB:

broadband

BM:

amygdala, basomedial nucleus

BIC:

brachium of the inferior colliculus

BI:

amygdala, basolateral nucleus

C:

caudal or C layer of the lateral geniculate body

Ca:

caudate nucleus

CBM:

cerebellum

CC:

caudal cortex of the inferior colliculus

CC:

corpus callosum

CF,CF-CF:

constant frequency cortical area

CF:

characteristic frequency

Cl:

claustrum

DF:

dorsal fringe auditory cortical area

DI–DIV:

layers of dorsal cortex of inferior colliculus

DM:

dorsomedial auditory cortical area

CG:

central gray

CIC:

commissure of the inferior colliculus

CM:

central medial nucleus

CM:

central medial/caudomedial auditory cortical area

CN:

central nucleus of the inferior colliculus

cNB:

central narrowband module in AI

CP:

cerebral peduncle

Cu:

cuneiform nucleus

D:

dorsal nucleus of the MGB or dorsal

d1–d4:

narrowband modules in AI

DD:

deep dorsal nucleus of the MGB

DC:

dorsal cortex of the inferior colliculus

DCa:

caudal pole of the inferior colliculus

DCN:

dorsal cochlear nucleus

DF:

dorsal cochlear nucleus, fusiform cell layer

DL:

dorsal nucleus of the lateral lemniscus

DlP:

dorsolateral periolivary nucleus

DM:

dorsal cochlear nucleus, molecular layer

DmP:

dorsomedial periolivary nucleus

DP:

dorsoposterior auditory area of cat

DS:

dorsal superficial nucleus of the MGB

DSCF:

Doppler-shifted constant frequency region

DZ:

dorsal auditory zone

ED:

posterior ectosylvian gyrus, dorsal part

EE:

excitatory-excitatory binaural interaction

EI:

posterior ectosylvian gyrus, intermediate part or excitatory-inhibitory binaural interaction

En:

entopeduncular nucleus

EP:

posterior ectosylvian gyrus

EV:

posterior ectosylvian gyrus, ventral part

EW:

Edinger-Westphal nucleus

FF:

fields of Forel

FM:

frequency modulated

FM-FM:

frequency-modulated auditory cortical area

FM1-FM:

first harmonic frequency-modulated auditory cortical area

FM1-FM2 :

first harmonic, second harmonic frequency-modulated auditory cortical area

FM1-FM3 :

first harmonic, third harmonic frequency-modulated auditory cortical area

FM1-FM4 :

first harmonic, fourth harmonic frequency-modulated auditory cortical area

GP:

globus pallidus

Ha:

habenula

Hip:

hippocampus

HiT:

habenulointerpeduncular tract

IC:

inferior colliculus

ICa:

internal capsule

IcT:

intercollicular tegmentum

IL:

intermediate nucleus of the lateral lemniscus

In:

insular cortex

IlN:

intralaminar thalamic nuclei

Int:

thalamic intralaminar nuclei

IT:

intercollicular tegmentum

La:

lateral nucleus of the amygdala

LC:

lateral cortex of the inferior colliculus

LD:

lateral dorsal nucleus

LGB,LGBd:

lateral geniculate body, dorsal part

LGBv:

lateral geniculate body, ventral part

LM:

lateral medial nucleus

LMN:

lateral mesencephalic nucleus

LN:

lateral nucleus of the inferior colliculus

LP:

lateral posterior nucleus

LS:

lateral superior olive

LT:

lateral nucleus of the trapezoid body

M:

medial division of the MGB

MCP:

middle cerebellar peduncle

MGB:

medial geniculate body

ML:

medial lemniscus

MLF:

medial longitudinal fasciculus

MR:

mesencephalic reticular formation

MRF:

mesencephalic reticular formation

MS:

medial superior olive

MT:

medial nucleus of the trapezoid body

Mv:

medioventral thalamic nucleus

MZ:

marginal zone of MGB

NB:

narrowband

NBIC:

nucleus of the brachium of the inferior colliculus

NRTP:

reticular tegmental nucleus of the pons

OT:

optic tract

OR:

optic radiation

Ov:

pars ovoidea of the ventral division of the MGB

P:

posterior auditory field

PC:

posterior commissure

Pd:

posterodorsal division of the DCN

PeN:

periolivary nuclei

PHy:

posterior hypothalamus

PL:

posterior limitans nucleus

PL:

posterior lateral auditory area of bushbaby

PLSS:

posterior lateral suprasylvian area

Pl:

paralemniscal zone

PN:

pontine nuclei

Pol:

rostral pole of the MGB

Pom:

medial part of the posterior group

Pt:

pretectum

Pu:

pulvinar nucleus

Pv:

posteroventral cochlear nucleus

PvO:

posteroventral cochlear nucleus, octopus cell layer

Py:

pyramidal tract

R:

rostral

R:

rostral auditory area of squirrel or monkey

Ra:

raphe

RF:

reticular formation

Rh:

rhomboid nucleus

RL:

rostral lateral auditory are in monkey

RN:

red nucleus

RP:

rostral pole nucleus of the inferior colliculus or MGB

Sa:

nucleus sagulum

SC:

superior colliculus

SCP:

superior cerebellar peduncle

SCPX:

decussation of the superior cerebellar peduncle

SF:

suprasylvian fringe area

SF/daz:

suprasylvian fringe/dorsal auditory zone

SGS:

superficial gray layer of superior colliculus

SGi:

intermediate gray layer of superior colliculus

SGP:

deep layer of superior colliculus

Sg:

suprageniculate nucleus

Sgl/Sl:

suprageniculate nucleus, lateral part

Sgm/S:

suprageniculate nucleus, medial part

SN:

substantia nigra

SNc:

substantia nigra, pars compacta

SNL:

substantia nigra, pars lateralis

SNR,SNr:

substantia nigra, pars reticulata

Spf:

subparafascicular nucleus

SpN:

suprapeduncular nucleus

TA:

temporal auditory area of squirrel

TE1:

primary auditory cortex of rat

TE2:

second auditory cortex of rat

TE3:

third auditory cortex of rat

Te:

temporal cortex

TL:

lateral nucleus of the trapezoid body

TM:

medial nucleus of the trapezoid body

TRN:

thalamic reticular nucleus

Tr:

trochlear nerve

TV:

ventral nucleus of the trapezoid body

V:

pars lateralis of the ventral division or ventral or ventral auditory area

VA:

ventroanterior auditory cortical area

Vb:

ventrobasal complex

Ve:

ventral auditory area

VF:

ventral fringe auditory cortical area

VL:

ventral nucleus of the lateral lemniscus

VLa:

ventral lateral thalamic nucleus

Vl:

ventrolateral nucleus of the MGB

VM:

ventral medial thalamic nucleus

Vm:

mesencephalic nucleus of the trigeminal

VmP:

ventromedial periolivary nucleus

VP:

ventral posterior auditory area

Vpl:

ventral posterolateral nucleus

Vpm:

ventral posteromedial nucleus

VT:

ventral nucleus of the trapezoid body

wm:

white matter

ZI:

zona incerta

I-IV:

layers of the dorsal cortex of the inferior colliculus

I-VI:

layers of cerebral cortex

α:

layer IVCα in primary visual cortex

β:

layer IVCβ in primary visual cortex

c:

layer IVc in primary visual cortex

35/36:

perirhinal cortex

References

  • Aitkin L, Tran L, and Syka J (1994) The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Experimental Brain Research 98:53–64.

    Article  CAS  Google Scholar 

  • Aitkin LM (1973) Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. Journal of Neurophysiology 36:275–283.

    CAS  PubMed  Google Scholar 

  • Aitkin LM and Dunlop CW (1968) Interplay of excitation and inhibition in the cat medial geniculate body. Journal of Neurophysiology 31:44–61.

    CAS  PubMed  Google Scholar 

  • Arends JJ (1997) Sensory representation in the cerebellum and control circuits of motion. European Journal of Morphology 35:234–245.

    Article  CAS  PubMed  Google Scholar 

  • Atzori M, Flores Hernández J, and Pineda JC (2004) Interlaminar differences of spike activation threshold in the auditory cortex of the rat. Hear Res 189:101–106.

    Article  PubMed  Google Scholar 

  • Atzori M, Lei S, Evans DI, Kanold PO, Phillips-Tansey E, McIntyre O, and McBain CJ (2001) Differential synaptic processing separates stationary from transient inputs to the auditory cortex. Nature Neuroscience 4:1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AEP, de Ribaupierre Y, and de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hearing Research 83:161–174.

    Article  CAS  PubMed  Google Scholar 

  • Barth DS, Goldberg N, Brett B, and Di S (1995) The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Research 678:177–190.

    Article  PubMed  Google Scholar 

  • Bartlett EL and Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Journal of Neurophysiology 81:1999–2016.

    CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, and Sejnowski T (2000) Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. Journal of Neurophysiology 84:1076–1087.

    CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Benedek G, Perény J, Kovács G, Fischer-Szátmári L, and Katoh YY (1997) Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus. Neuroscience 78:179–189.

    Article  CAS  PubMed  Google Scholar 

  • Beneyto M and Prieto JJ (2001) Connections of the auditory cortex with the claustrum and endopiriform nucleus in the cat. Brain Research Bulletin 54:485–498.

    Article  CAS  PubMed  Google Scholar 

  • Berman AL and Jones EG (1982) The Thalamus and Basal Telencephalon of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. University of Wisconsin Press, Madison.

    Google Scholar 

  • Bordi F and LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Experimental Brain Research 98:261–274.

    Article  CAS  Google Scholar 

  • Bordi F and LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Experimental Brain Research 98:275–286.

    Article  CAS  Google Scholar 

  • Brandner S and Redies H (1990) The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. Journal of Neuroscience 10:50–61.

    CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. The Perceptual Organization of Sound. MIT Press, Cambridge.

    Google Scholar 

  • Bueno-López JL, Reblet C, López-Medina A, Gómez-Urquijo SM, Grandes P, Gondra J, and Hennequet L (1990) Targets and laminar distribution of projection neurons with ‘inverted’ morphology in rabbit cortex. European Journal of Neuroscience 3:415–430.

    Article  Google Scholar 

  • Caballero-Bleda M, Fernandez B, and Puelles L (1991) Acetylcholinesterase and NADH-diaphorase chemoarchitectonic subdivisions in the rabbit medial geniculate body. Journal of Chemical Neuroanatomy 4:271–280.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. Journal of Neuroscience 3:2350–2364.

    CAS  PubMed  Google Scholar 

  • Calford MB and Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through the thalamus. Journal of Neuroscience 3:2365–2380.

    CAS  PubMed  Google Scholar 

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annual Review of Neuroscience 21:47–74.

    Article  CAS  PubMed  Google Scholar 

  • Campeau S, Falls WA, Cullinan WE, Helmreich DL, Davis M, and Watson SJ (1997) Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate early gene c-fos. Neuroscience 78:1087–1104.

    Article  CAS  PubMed  Google Scholar 

  • Cant NB and Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Research Bulletin 60:457–474.

    Article  PubMed  Google Scholar 

  • Casseday JH, Schreiner CE, and Winer JA (2005) The inferior colliculus: past, present, and future. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 626–640.

    Chapter  Google Scholar 

  • Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behavioural Brain Research 71:163–170.

    Article  CAS  PubMed  Google Scholar 

  • Cetas JS, Price RO, Crowe J, Velenovsky DS, and McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. Journal of Comparative Neurology 458:307–317.

    Article  PubMed  Google Scholar 

  • Cetas JS, Price RO, Velenovsky DS, Crowe JJ, Sinex DG, and McMullen NT (2002) Cell types and response properties of neurons in the ventral division of the medial geniculate body of the rabbit. Journal of Comparative Neurology 445:78–96.

    Article  PubMed  Google Scholar 

  • Chen QC and Jen PH (2000) Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons. Hearing Research 150:161–174.

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Barone P, and Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 2, The Mammalian Auditory Pathway: Neurophysiology. Springer, New York, pp. 232–334.

    Google Scholar 

  • Clasca F, Llamas A, and Reinoso-Suarez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. Journal of Comparative Neurology 384:456–482.

    Article  CAS  PubMed  Google Scholar 

  • Code RA and Winer JA (1986) Columnar organization and reciprocity of commissural connections in cat primary auditory cortex (AI). Hearing Research 23:205–222.

    Article  CAS  PubMed  Google Scholar 

  • Coomes DL, Bickford ME, and Schofield BR (2002) GABAergic circuitry in the dorsal division of the cat medial geniculate nucleus. Journal of Comparative Neurology 453:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Cox CL, Metherate R, Weinberger NM, and Ashe JH (1992) Synaptic potentials and effects of amino acid antagonists in the auditory cortex. Brain Research Bulletin 28:401–410.

    Article  CAS  PubMed  Google Scholar 

  • Cox CL and Sherman SM (2000) Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27:597–610.

    Article  CAS  PubMed  Google Scholar 

  • Cox CL, Zhou Q, and Sherman SM (1998) Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394:478–482.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JW (1998) Organization in the auditory sector of the cat’s thalamic reticular nucleus. Journal of Comparative Neurology 390:167–182.

    Article  CAS  PubMed  Google Scholar 

  • Davis KA and Young ED (2000) Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus. Journal of Neurophysiology 83:926–940.

    CAS  PubMed  Google Scholar 

  • de la Mothe L, Blumell S, Kajikawa Y, and Hackett TA (2006) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. Journal of Comparative Neurology 496:27–71.

    Article  PubMed  Google Scholar 

  • de Ribaupierre F (1997) Acoustic information processing in the auditory thalamus and cerebral cortex. In: Ehret G (ed). The Central Auditory System. Oxford University Press, New York, pp. 317–397.

    Google Scholar 

  • Deschênes M, Veinante P, and Zhang Z-W (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Research Reviews 28:286–308.

    Article  PubMed  Google Scholar 

  • Diamond ME, Armstrong-James M, Budway MJ, and Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. Journal of Comparative Neurology 319:66–84.

    Article  CAS  PubMed  Google Scholar 

  • Doucet JR, Molavi DL, and Ryugo DK (2003) The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Experimental Brain Research 153:477–485.

    Article  Google Scholar 

  • Edeline J-M and Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behavioral Neuroscience 106:81–105.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Ehret G (1997) The auditory cortex. Journal of Comparative Physiology A 181:547–557.

    Article  CAS  Google Scholar 

  • Eliades SJ and Wang X (2005) Dynamics of auditory-vocal interaction in monkey auditory cortex. Cerebral Cortex 15:1510–1523.

    Article  PubMed  Google Scholar 

  • Feliciano M, Saldaña E, and Mugnaini E (1995) Direct projections from the rat primary auditory neocortex to nucleus sagulum, paralemniscal regions, superior olivary complex and cochlear nuclei. Auditory Neuroscience 1:287–308.

    Google Scholar 

  • Foeller E, Vater M, and Kössl M (2001) Laminar analysis of inhibition in the gerbil primary auditory cortex. Journal of the Association for Research in Otolaryngology 2:279–296.

    CAS  PubMed  Google Scholar 

  • Foote SL, Bloom FE, and Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiological Reviews 63:844–914.

    CAS  PubMed  Google Scholar 

  • Foote SL, Freedman R, and Oliver AP (1975) Effects of putative transmitters on neuronal activity in monkey auditory cortex. Brain Research 86:229–242.

    Article  CAS  PubMed  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, and Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869.

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Martin KAC, Smith AD, and Somogyi P (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axo-axonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex. Journal of Comparative Neurology 221:263–278.

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Turney S, Price JL, and Burkhalter A (2002) Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. Journal of Comparative Neurology 443:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Groh JM, Trause AS, Underhill AM, Clark KR, and Inati S (2001) Eye position influences auditory responses in primate inferior colliculus. Neuron 29:509–518.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1999) Callosal connections of the parabelt auditory cortex in macaque monkeys. European Journal of Neuroscience 11:856–866.

    Article  CAS  PubMed  Google Scholar 

  • Haenggeli CA, Pongstaporn T, Doucet JR, and Ryugo DK (2005) Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. Journal of Comparative Neurology 484:191–205.

    Article  PubMed  Google Scholar 

  • Harting JK and Van Lieshout DP (2000) Projections from the rostral pole of the inferior colliculus to the cat superior colliculus. Brain Research 881:244–247.

    Article  CAS  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, and Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. Journal of Comparative Neurology 362:195–208.

    Article  CAS  PubMed  Google Scholar 

  • He J (2003) Slow oscillation in non-lemniscal auditory thalamus. Journal of Neuroscience 23:8281–8290.

    CAS  PubMed  Google Scholar 

  • He J and Hu B (2002) Differential distribution of burst and single-spike responses in auditory thalamus. Journal of Neurophysiology 88:2152–2156.

    Article  PubMed  Google Scholar 

  • Heffner HE and Heffner RS (1989) Unilateral auditory cortex ablation in macaques results in a contralateral hearing loss. Journal of Neurophysiology 62:789–801.

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Schwark HD, Jones EG, and Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience 7:1503–1519.

    CAS  PubMed  Google Scholar 

  • Hsieh CY, Cruikshank SJ, and Metherate R (2000) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research 880:51–64.

    Article  CAS  PubMed  Google Scholar 

  • Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. Journal of Physiology (London) 483:167–182.

    CAS  Google Scholar 

  • Hu B, Senatorov V, and Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. Journal of Physiology (London) 479:217–231.

    Google Scholar 

  • Huang CL, Larue DT, and Winer JA (1999) GABAergic organization of the cat medial geniculate body. Journal of Comparative Neurology 415:368–392.

    Article  CAS  PubMed  Google Scholar 

  • Huang CL and Winer JA (1997) Areal and laminar distribution of cat auditory thalamocortical projections. Proceedings of the Society for Neuroscience 24:185.

    Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey AL, Sur M, Uhlrich DJ, and Sherman SM (1985) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology 233:159–189.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. Journal of Comparative Neurology 182:637–660.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Morel A (1985a) Tonotopic organization in lateral part of posterior group of thalamic nuclei in the cat. Journal of Neurophysiology 53:836–851.

    CAS  PubMed  Google Scholar 

  • Imig TJ and Morel A (1985b) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology 53:309–340.

    CAS  PubMed  Google Scholar 

  • Jacobson M (1975) Development and evolution of type II neurons: conjectures a century after Golgi. In: Santini M (ed). Golgi Centennial Symposium: Perspectives in Neurobiology. Raven Press, New York, pp. 147–160.

    Google Scholar 

  • Jane JA, Masterton RB, and Diamond IT (1965) The function of the tectum for attention to auditory stimuli in the cat. Journal of Comparative Neurology 125:165–192.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 357:1659–1673.

    Article  Google Scholar 

  • Jones EG, Burton H, Saper CB, and Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. Journal of Comparative Neurology 167:385–420.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens U (2002) Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews 26:235–258.

    Article  PubMed  Google Scholar 

  • Kamke MR, Brown M, and Irvine DR (2003) Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology 459:355–367.

    Article  PubMed  Google Scholar 

  • Kamke MR, Brown M, and Irvine DRF (2005) Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex. Hearing Research 206:89–106.

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, and Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. Journal of Neurophysiology 91:2551–2567.

    Article  PubMed  Google Scholar 

  • Kaur S, Rose HJ, Lazar R, Liang K, and Metherate R (2005) Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro. Neuroscience 134:1033–1045.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K (1973) Corticocortical fiber connections of the cat cerebrum. I. The temporal region. Brain Research 51:1–21.

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB and Judge PW (1985) Effects of medial geniculate lesions on sound localization by the rat. Journal of Neurophysiology 53:361–372.

    CAS  PubMed  Google Scholar 

  • Kimura A, Donishi T, Sakoda T, Hazama M, and Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117:1003–1016.

    Article  CAS  PubMed  Google Scholar 

  • Kudoh M, Sakai M, and Shibuki K (2002) Differential dependence of LTD on glutamate receptors in the auditory cortical synapses of cortical and thalamic inputs. Journal of Neurophysiology 88:3167–3174.

    Article  CAS  PubMed  Google Scholar 

  • Kulesza RJ, Viñuela A, Saldaña E, and Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hearing Research 168:12–24.

    Article  PubMed  Google Scholar 

  • Kurokawa T, Yoshida K, Yamamoto T, and Oka H (1990) Frontal cortical projections from the suprageniculate nucleus in the rat, as demonstrated by the PHA-L method. Neuroscience Letters 120:259–262.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara N and Zook JM (2000) Geniculo-collicular descending projections in the gerbil. Brain Research 878:79–87.

    Article  CAS  PubMed  Google Scholar 

  • Kvasnak E, Popelar J, and Syka J (2000a) Discharge properties of neurons in subdivisions of the medial geniculate body of the guinea pig. Physiological Research 49:369–378.

    CAS  PubMed  Google Scholar 

  • Kvasnak E, Suta D, Popelar J, and Syka J (2000b) Neuronal connections in the medial geniculate body of the guinea-pig. Experimental Brain Research 132:87–102.

    Article  CAS  Google Scholar 

  • Landry P and Deschênes M (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology 199:345–372.

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, and Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. Journal of Comparative Neurology 242:182–213.

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Sakaguchi A, Iwata J, and Reis DJ (1986) Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience 17:615–627.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Imaizumi K, Schreiner CE, and Winer JA (2004a) Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex 14:441–451.

    Article  PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, and Winer JA (2004b) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory forebrain connections. Cerebral Cortex 15:1804–1814.

    Article  PubMed  Google Scholar 

  • Lennartz RC and Weinberger NM (1992) Frequency-specific receptive field plasticity in the medial geniculate body induced by Pavlovian fear conditioning is expressed in the anesthetized brain. Behavioral Neuroscience 106:484–497.

    Article  CAS  PubMed  Google Scholar 

  • Linke R (1999) Differential projection patterns of superior and inferior collicular neurons onto posterior paralaminar nuclei of the thalamus surrounding the medial geniculate body in the rat. European Journal of Neuroscience 11:187–203.

    Article  CAS  PubMed  Google Scholar 

  • Linke R and Schwegler H (2000) Convergent and complementary projections of the caudal paralaminar thalamic nuclei to rat temporal and insular cortex. Cerebral Cortex 10:753–771.

    Article  CAS  PubMed  Google Scholar 

  • Llano DA and Feng AS (2000) Computational models of temporal processing in the auditory thalamus. Biological Cybernetics 83:419–433.

    Article  CAS  PubMed  Google Scholar 

  • Loftus WC and Sutter ML (2001) Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. Journal of Neurophysiology 86:475–491.

    CAS  PubMed  Google Scholar 

  • Lund JS, Wu Q, Hadingham PT, and Levitt JB (1995) Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. Journal of Anatomy (London) 187:563–581.

    Google Scholar 

  • Malmierca MS, Merchán MA, Henkel CK, and Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. Journal of Neuroscience 22:10891–10897.

    CAS  PubMed  Google Scholar 

  • Malpeli JG and Baker FH (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. Journal of Comparative Neurology 161:569–594.

    Article  CAS  PubMed  Google Scholar 

  • Marsh RA, Fuzessery ZM, Grose CD, and Wenstrup JJ (2002) Projection to the inferior colliculus from the basal nucleus of the amygdala. Journal of Neuroscience 22:10449–10460.

    CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ, and Bowman EM (2000) Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. Journal of Neuroscience 20:8897–8901.

    CAS  PubMed  Google Scholar 

  • McEchron MD, Green EJ, Winters RW, Nolen TG, Schneiderman N, and McCabe PM (1996) Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. Journal of Neuroscience 16:1273–1283.

    CAS  PubMed  Google Scholar 

  • McMullen NT and de Venecia RK (1993) Thalamocortical patches in auditory neocortex. Brain Research 620:317–322.

    Article  CAS  PubMed  Google Scholar 

  • McMullen NT, Velenovsky DS, and Holmes MG (2005) Auditory thalamic organization: cellular slabs, dendritic arbors and tectothalamic axons underlying the frequency map. Neuroscience 136:927–943.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM and Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Research 77:397–415.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. Journal of Neuroscience 3:203–225.

    CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A, Itoh K, Nomura S, Kudo M, Kaneko T, and Mizuno N (1984) Thalamocortical projections to layer I of the primary auditory cortex in the cat: a horseradish peroxidase study. Brain Research 310:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, and Mizuno N (1985) Morphology and laminar organization of electrophysiologically identified neurons in primary auditory cortex in the cat. Journal of Comparative Neurology 235:430–447.

    Article  CAS  PubMed  Google Scholar 

  • Mooney DM, Hu B, and Senatorov VV (1995) Muscarine induces an anomalous inhibition of synaptic transmission in rat auditory thalamic neurons in vitro. Journal of Pharmacology and Experimental Therapeutics 275:838–844.

    CAS  PubMed  Google Scholar 

  • Morel A and Imig TJ (1987) Thalamic projections to fields A, AI, P ,and VP in the cat auditory cortex. Journal of Comparative Neurology 265:119–144.

    Article  CAS  PubMed  Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • Morest DK (1965a) The laminar structure of the medial geniculate body of the cat. Journal of Anatomy (London) 99:143–160.

    CAS  Google Scholar 

  • Morest DK (1965b) The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. Journal of Anatomy (London) 99:611–634.

    CAS  Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Zeitschrift für Anatomie und Entwicklungsgeschichte 133:216–246.

    Article  CAS  Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. Journal of Comparative Neurology 162:157–194.

    Article  CAS  PubMed  Google Scholar 

  • Morest DK and Winer JA (1986) The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Advances in Anatomy, Embryology and Cell Biology 97:1–96.

    CAS  Google Scholar 

  • Nelken I (2002) Feature detection by the auditory cortex. In: Oertel D, Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer, New York, pp. 359–416.

    Google Scholar 

  • Olazábal UE and Moore JK (1989) Nigrotectal projection to the inferior colliculus: horseradish peroxidase transport and tyrosine hydroxylase immunohistochemical studies in rats, cats, and bats. Journal of Comparative Neurology 282:98–118.

    Article  PubMed  Google Scholar 

  • Oliver DL (2005) Neuronal organization of the inferior colliculus. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 69–114.

    Chapter  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, and Saint Marie RL (1994) Morphology of GABAergic cells and axon terminals in the cat inferior colliculus. Journal of Comparative Neurology 340:27–42.

    Article  CAS  PubMed  Google Scholar 

  • Pape HC and McCormick DA (1995) Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68:1105–1125.

    Article  CAS  PubMed  Google Scholar 

  • Perales M, Winer JA, and Prieto JJ (2006) Focal projections of cat auditory cortex to the pontine nuclei. Journal of Comparative Neurology 497:959–980.

    Article  PubMed  Google Scholar 

  • Pollak GD, Burger RM, and Klug A (2003) Dissecting the circuitry of the auditory system. Trends in Neurosciences 26:33–39.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994a) Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:383–402.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, and Winer JA (1994b) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). Journal of Comparative Neurology 344:349–382.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ and Winer JA (1999) Layer VI in cat primary auditory cortex (AI): Golgi study and sublaminar origins of projection neurons. Journal of Comparative Neurology 404:332–358.

    Article  CAS  PubMed  Google Scholar 

  • Radnikow G, Feldmeyer D, and Lübke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. Journal of Neuroscience 22:6908–6919.

    CAS  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinion in Neurobiology 12:433–440.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1983) Auditory cortical field projections to the basal ganglia of the cat. Neuroscience 8:67–86.

    Article  CAS  PubMed  Google Scholar 

  • Reblet C, López-Medina A, Gómez-Urquijo SM, and Bueno-López JL (1992) Widespread horizontal connections arising from layer 5/6 border inverted cells in rabbit visual cortex. European Journal of Neuroscience 4:221–234.

    Article  PubMed  Google Scholar 

  • Riquimaroux H, Gaioni SJ, and Suga N (1992) Inactivation of the DSCF area of the auditory cortex with muscimol disrupts frequency discrimination in the mustached bat. Journal of Neurophysiology 68:1613–1623.

    CAS  PubMed  Google Scholar 

  • Romanski LM, Clugnet M, Bordi F, and LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behavioral Neuroscience 107:444–450.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM and LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cerebral Cortex 3:515–532.

    Article  CAS  PubMed  Google Scholar 

  • Rose HJ and Metherate R (2005) Auditory thalamocortical transmission is reliable and temporally precise. Journal of Neurophysiology 94:2019–2030.

    Article  PubMed  Google Scholar 

  • Rose JE and Woolsey CN (1958) Cortical connections and functional organization of thalamic auditory system of cat. In: Harlow HF and Woolsey CN (eds). Biological and Biochemical Bases of Behavior. University of Wisconsin Press, Madison, pp. 127–150.

    Google Scholar 

  • Rouiller EM and Durif C (2004) The dual pattern of corticothalamic projection of the primary auditory cortex in macaque monkey. Neuroscience Letters 358:49–52.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm GM, de Ribaupierre Y, Villa AEP, and de Ribaupierre F (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hearing Research 39:127–146.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM and Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Research Bulletin 53:727–741.

    Article  CAS  PubMed  Google Scholar 

  • Samson FK, Barone P, Irons WA, Clarey JC, Poirier P, and Imig TJ (2000) Directionality derived from differential sensitivity to monaural and binaural cues in the cat’s medial geniculate body. Journal of Neurophysiology 84:1330–1345.

    CAS  PubMed  Google Scholar 

  • Scheibel ME and Scheibel AB (1966) Patterns of organization in specific and nonspecific thalamic fields. In: Purpura DP and Yahr MD (eds). The Thalamus. Columbia University Press, New York, pp. 13–46.

    Google Scholar 

  • Schofield BR and Coomes DL (2004) Projections from the auditory cortex to the superior olivary complex in guinea pigs. European Journal of Neuroscience 19:2188–2200.

    Article  PubMed  Google Scholar 

  • Schofield BR and Coomes DL (2005) Auditory cortical projections to the cochlear nucleus in guinea pigs. Hearing Research 199:89–102.

    Article  PubMed  Google Scholar 

  • Schreiner CE and Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. Journal of Neurophysiology 51:1284–1305.

    CAS  PubMed  Google Scholar 

  • Schreiner CE and Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386.

    Article  CAS  PubMed  Google Scholar 

  • Schuller G, Fischer S, and Schweizer H (1997) Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. parnellii: the afferent and efferent connections of the paralemniscal area. European Journal of Neuroscience 9:342–355.

    Article  CAS  PubMed  Google Scholar 

  • Senatorov VV and Hu B (2002) Extracortical descending projections to the rat inferior colliculus. Neuroscience 115:243–250.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM and Guillery RW (1996) Functional organization of thalamocortical relays. Journal of Neurophysiology 76:1367–1395.

    CAS  PubMed  Google Scholar 

  • Sherman SM and Guillery RW (2000) Exploring the Thalamus. Academic Press, Orlando.

    Google Scholar 

  • Shi C-J and Cassell MD (1997) Cortical, thalamic, and amygdaloid projections of rat temporal cortex. Journal of Comparative Neurology 382:153–175.

    Article  CAS  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, and Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. Journal of Comparative Neurology 340:405–426.

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, and Yin TCT (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. Journal of Comparative Neurology 331:245–260.

    Article  CAS  PubMed  Google Scholar 

  • Smith PH and Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology 436:508–519.

    Article  CAS  PubMed  Google Scholar 

  • Smith PH and Spirou GA (2002) From the cochlea to the cortex and back. In: Oertel D, Fay RR and Popper AN (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer, New York, pp. 6–71.

    Google Scholar 

  • Sousa-Pinto A (1973) The structure of the first auditory cortex (A I) in the cat. I. — Light microscopic observations on its structure. Archives Italiennes de Biologie 111:112–137.

    CAS  PubMed  Google Scholar 

  • Strominger NL, Nelson LR, and Dougherty WJ (1977) Second order auditory pathways in the chimpanzee. Journal of Comparative Neurology 172:349–366.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML (2000) Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. Journal of Neurophysiology 84:1012–1025.

    CAS  PubMed  Google Scholar 

  • Sutter ML and Loftus WC (2003) Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms. Journal of Neurophysiology 90:2629–2647.

    Article  CAS  PubMed  Google Scholar 

  • Syka J, Popelar J, Kvasnak E, and Astl J (2000) Response properties of neurons in the central nucleus and external and dorsal cortices of the inferior colliculus in guinea pig. Experimental Brain Research 133:254–266.

    Article  CAS  Google Scholar 

  • Thomas H and Lopez V (2003) Comparative study of inter- and intrahemispheric cortico-cortical connections in gerbil auditory cortex. Biological Research 36:155–169.

    Article  PubMed  Google Scholar 

  • Van Essen DC (2005) Corticocortical and thalamocortical information flow in the primate visual system. Progress in Brain Research 69:215–237.

    Google Scholar 

  • Vogt BA (1991) The role of layer I in cortical function. In: Peters A (ed). Cerebral Cortex. Plenum Press, New York, pp. 49–80.

    Google Scholar 

  • Volkov IO and Galazjuk AV (1991) Formation of spike response to sound tones in cat auditory cortex neurons: interaction of excitatory and inhibitory effects. Neuroscience 43:307–321.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN and Harper MS (1997) Callosal connections of the ferret primary auditory cortex. Experimental Brain Research 116:367–374.

    Article  CAS  Google Scholar 

  • Weedman DL and Ryugo DK (1996a) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. Journal of Comparative Neurology 371:311–324.

    Article  CAS  PubMed  Google Scholar 

  • Weedman DL and Ryugo DK (1996b) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Research 706:97–102.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup JJ (1999) Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat. Journal of Neurophysiology 82:2528–2544.

    CAS  PubMed  Google Scholar 

  • Wenstrup JJ (2005) The tectothalamic system. In: Winer JA and Schreiner CE (ed). The Inferior Colliculus. Springer, New York, pp. 200–230.

    Chapter  Google Scholar 

  • Wenstrup JJ and Leroy SA (2001) Spectral integration in the inferior colliculus: role of glycinergic inhibition in response facilitation. Journal of Neuroscience 21:RC124 (121–126).

    CAS  PubMed  Google Scholar 

  • Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Experimental Neurology 15:299–318.

    Article  CAS  PubMed  Google Scholar 

  • Wester K, Irvine DRF, and Hugdahl K (2001) Auditory laterality and attentional deficits after thalamic haemorrhage. Journal of Neurology 248:676–683.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984a) Anatomy of layer IV in cat primary auditory cortex (AI). Journal of Comparative Neurology 224:535–567.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984b) The human medial geniculate body. Hearing Research 15:225–247.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984c) The non-pyramidal neurons in layer III of cat primary auditory cortex (AI). Journal of Comparative Neurology 229:512–530.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1984d) The pyramidal cells in layer III of cat primary auditory cortex (AI). Journal of Comparative Neurology 229:476–496.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1985) Structure of layer II in cat primary auditory cortex (AI). Journal of Comparative Neurology 238:10–37.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1986) Neurons accumulating [3H]gamma-aminobutyric acid (GABA) in supragranular layers of cat primary auditory cortex (AI). Neuroscience 19:771–793.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp. 222–409.

    Google Scholar 

  • Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA and Schreiner CE (ed). The Inferior Colliculus. Springer, New York, pp. 231–247.

    Chapter  Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hearing Research 212:1–8.

    Article  PubMed  Google Scholar 

  • Winer JA, Diamond IT, and Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. Journal of Comparative Neurology 176:387–418.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. Journal of Comparative Neurology 257:282–315.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1988) Anatomy of glutamic acid decarboxylase (GAD) immunoreactive neurons and axons in the rat medial geniculate body. Journal of Comparative Neurology 278:47–68.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1989) Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Neuroscience 33:499–515.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:3083–3087.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, and Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology 400:147–174.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Huang CL (1999a) Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. Journal of Comparative Neurology 413:181–197.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, and Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. Journal of Comparative Neurology 355:317–353.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Lee CC (2007) The distributed auditory cortex. Hearing Research 229:3–13.

    Article  PubMed  Google Scholar 

  • Winer JA, Miller LM, Lee CC, and Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends in Neurosciences 28:255–263.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. Journal of Neuroscience 3:2629–2651.

    CAS  PubMed  Google Scholar 

  • Winer JA and Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. Journal of Comparative Neurology 221:1–30.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Morest DK, and Diamond IT (1988) A cytoarchitectonic atlas of the medial geniculate body of the opossum, Didelphys virginiana, with a comment on the posterior intralaminar nuclei of the thalamus. Journal of Comparative Neurology 274:422–448.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. Journal of Comparative Neurology 434:379–412.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, and Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:8005–8010.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Sally SL, Larue DT, and Kelly JB (1999b) Origins of medial geniculate body projections to physiologically defined regions of rat auditory cortex. Hearing Research 130:42–61.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Schreiner CE (2005) The central auditory system: a functional analysis. In: Winer JA and Schreiner CE (eds). The Inferior Colliculus. Springer, New York, pp. 1–68.

    Chapter  Google Scholar 

  • Winer JA and Wenstrup JJ (1994) The neurons of the medial geniculate body in the mustached bat (Pteronotus parnellii). Journal of Comparative Neurology 346:183–206.

    Article  CAS  PubMed  Google Scholar 

  • Wong D and Kelly JP (1981) Differentially projecting cells in individual layers of the auditory cortex: a double-labeling study. Brain Research 230:362–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Thanks to Christoph E. Schreiner for helpful comments. This work was supported by United States Public Health Service grant R01 DC02319-26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery A. Winer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winer, J.A. (2011). A Profile of Auditory Forebrain Connections and Circuits. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_2

Download citation

Publish with us

Policies and ethics