Skip to main content

fMRI Wada Test: Prospects for Presurgical Mapping of Language and Memory

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Since the inception of functional magnetic resonance imaging (fMRI) in the early 1990s, clinicians and researchers have been interested in the potential utility of this technology for replacement of the intracarotid amobarbital test (IAT or Wada test). The IAT is an invasive angiographic procedure that has traditionally been considered the conventional procedure for preoperative lateralization of language and memory in neurosurgical populations with lesions affecting brain regions critical for these functions. As fMRI is a repeatable, noninvasive procedure with no significant known health risks for most individuals, it would be advantageous to create validated paradigms to allow its use in place of the IAT. To date, the available literature strongly suggests that fMRI paradigms can be successfully used to replace the IAT in terms of language lateralization. While the status of appropriately reliable and valid memory assessment paradigms is not as advanced, significant progress has been made in this area as well. Despite the apparent advantages of fMRI in presurgical assessment, including more specific localization of task-related brain regions, which is not possible with IAT, there remain methodological challenges and issues of interpretation that have thus far prevented widespread use of fMRI in place of the IAT. This chapter discusses the background of the IAT and its risks and benefits compared to fMRI and reviews the body of literature examining the capacity of fMRI to lateralize and localize expressive and receptive language functions effectively, as well as more recent advances in utilizing fMRI findings to predict postsurgical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medina LS, Aguirre E, Bernal B, Altman NR. Functional MR imaging versus Wada test for evaluation of language lateralization: cost analysis. Radiology. 2004;230(1):49–54.

    PubMed  Google Scholar 

  2. Kesavadas C, Thomas B, Sujesh S, et al. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy. Pediatr Radiol. 2007;37(10):964–74.

    PubMed  Google Scholar 

  3. Wellmer J, Fernandez G, Linke DB, Urbach H, Elger CE, Kurthen M. Unilateral intracarotid amobarbital procedure for language lateralization. Epilepsia. 2005;46(11):1764–72.

    PubMed  Google Scholar 

  4. Loring DW, Meador KJ, Lee GP, King DW. Amobarbital effects and lateralized brain function: The Wada test. New York: Springer-Verlag; 1992.

    Google Scholar 

  5. van Emde Boas W, Juhn A. Wada and the Sodium Amytal Test The first (and last?) 50 years. J Hist Neurosci. 1999;8(3):286–92.

    PubMed  CAS  Google Scholar 

  6. Gardner WJ. Injection of procaine into the brain to locate speech area in left-handed persons. Arch Neurol Psychiatry. 1941;46:1035–8.

    Google Scholar 

  7. Wada J, Rasmussen T. Intracarotid injection of Sodium Amytal for the lateralization of cerebral speech dominance. J Neurosurg. 1960;17:266–82.

    Google Scholar 

  8. Milner B, Branch C, Rasmussen T. Study of short-term memory after intracarotid injection of Sodium Amytal. Trans Am Neurol Assoc. 1962;87:224–6.

    Google Scholar 

  9. Sperling MR, Saykin AJ, Glosser G, et al. Predictors of outcome after anterior temporal lobectomy: The intracarotid amobarbital test. Neurology. 1994;44(12):2325–30.

    PubMed  CAS  Google Scholar 

  10. Binder JR, Swanson SJ, Hammeke TA, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46(4):978–84.

    PubMed  CAS  Google Scholar 

  11. Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol. 1998;19(6):1095–8.

    PubMed  CAS  Google Scholar 

  12. Rausch R, Risinger M. Intracarotid sodium amobarbital procedure. In: Boulton AA, Baker GB, Hiscock M, editors. Neuropsychology. Clifton, NJ: The Humana Press; 1990. p. 127–46.

    Google Scholar 

  13. Simkins-Bullock J. Beyond speech lateralization: a review of the variability, reliability, and validity of the intracarotid amobarbital procedure and its nonlanguage uses in epilepsy surgery candidates. Neuropsychol Rev. 2000;10(1):41–74.

    PubMed  CAS  Google Scholar 

  14. Surgery for epilepsy. NIH Consensus Statement Online. Mar 19–21 1990;8(2):1–20.

    Google Scholar 

  15. Assessment: Neuropsychological testing of adults. Considerations for neurologists. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;47(2):592–599.

    Google Scholar 

  16. Rausch R. Role of the neuropsychological evaluation and the intracarotid sodium amobarbital procedure in the surgical treatment for epilepsy. Epilepsy Res Suppl. 1992;5:77–86.

    PubMed  CAS  Google Scholar 

  17. Tatum IV WO, Benbadis SR, Vale FL. The neurosurgical treatment of epilepsy. Arch Fam Med. 2000;9(10):1142–7.

    PubMed  Google Scholar 

  18. Carpentier A, Pugh KR, Westerveld M, et al. Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia. 2001;42(10):1241–54.

    PubMed  CAS  Google Scholar 

  19. Devinsky O, Perrine K, Llinas R, Luciano DJ, Dogali M. Anterior temporal language areas in patients with early onset of temporal lobe epilepsy. Ann Neurol. 1993;34(5):727–32.

    PubMed  CAS  Google Scholar 

  20. Gaillard WD, Balsamo L, Xu B, et al. Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology. 2002;59(2):256–65.

    PubMed  CAS  Google Scholar 

  21. Gaillard WD, Berl MM, Moore EN, et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology. 2007;69(18):1761–71.

    PubMed  CAS  Google Scholar 

  22. Mizrahi EM, Kellaway P, Grossman RG, et al. Anterior temporal lobectomy and medically refractory temporal lobe epilepsy of childhood. Epilepsia. 1990;31(3):302–12.

    PubMed  CAS  Google Scholar 

  23. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann NY Acad Sci. 1977;299:355–69.

    PubMed  CAS  Google Scholar 

  24. Satz P, Strauss E, Wada J, Orsini DL. Some correlates of intra- and interhemispheric speech organization after left focal brain injury. Neuropsychologia. 1988;26(2):345–50.

    PubMed  CAS  Google Scholar 

  25. Springer JA, Binder JR, Hammeke TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122(Pt 11):2033–46.

    PubMed  Google Scholar 

  26. Woods RP, Dodrill CB, Ojemann GA. Brain injury, handedness, and speech lateralization in a series of amobarbital studies. Ann Neurol. 1988;23(5):510–8.

    PubMed  CAS  Google Scholar 

  27. Sabbah P, Chassoux F, Leveque C, et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage. 2003;18(2):460–7.

    PubMed  CAS  Google Scholar 

  28. Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology. 2003;61(5):699–701.

    PubMed  CAS  Google Scholar 

  29. Thivard L, Hombrouck J, du Montcel ST, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage. 2005;24(3):841–51.

    PubMed  Google Scholar 

  30. Swanson SJ, Binder JR, Possing ET, et al. fMRI language laterality during a semantic task: Age of onset and side of seizure focus effects. J Int Neuropsychol Soc. 2002;8(2):222.

    Google Scholar 

  31. Pujol J, Deus J, Losilla JM, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999;52(5):1038–43.

    PubMed  CAS  Google Scholar 

  32. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002;59(2):238–44.

    PubMed  CAS  Google Scholar 

  33. Knecht S, Drager B, Deppe M, et al. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123(Pt 12):2512–8.

    PubMed  Google Scholar 

  34. Knecht S, Deppe M, Drager B, et al. Language lateralization in healthy right-handers. Brain. 2000;123(Pt 1):74–81.

    PubMed  Google Scholar 

  35. Binder JR, Rao SM, Hammeke TA, et al. Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol. 1995;52(6):593–601.

    PubMed  CAS  Google Scholar 

  36. Gaillard WD, Hertz-Pannier L, Mott SH, Barnett AS, LeBihan D, Theodore WH. Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology. 2000;54(1):180–5.

    PubMed  CAS  Google Scholar 

  37. Grandin CB, Gaillard WD, Hunter KE, et al. Comparison of phonemic and semantic verbal fluency tasks: An fMRI study. Neuroimage. 1998;7:S133.

    Google Scholar 

  38. Hertz-Pannier L, Gaillard WD, Mott SH, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48(4):1003–12.

    PubMed  CAS  Google Scholar 

  39. Beauregard M, Chertkow H, Bub D, Murtha S, Dixon R, Evans A. The neural substrate for concrete, abstract, and emotional word lexica: A positron emission tomography study. J Cogn Neurosci. 1997;9(4):441–61.

    Google Scholar 

  40. Beeman M. Semantic processing in the right hemisphere may contribute to drawing inferences from discourse. Brain Lang. 1993;44(1):80–120.

    PubMed  CAS  Google Scholar 

  41. Beeman M, Friedman RB, Grafman J, Perez E, Diamond S, Lindsay MB. Summation priming and coarse coding in the right hemisphere. J Cogn Neurosci. 1994;6(1):26–45.

    Google Scholar 

  42. Fletcher PC, Happe F, Frith U, et al. Other minds in the brain: A functional imaging study of “theory of mind” in story comprehension. Cognition. 1995;57(2):109–28.

    PubMed  CAS  Google Scholar 

  43. Gaillard WD, Pugliese M, Grandin CB, et al. Cortical localization of reading in normal children: an fMRI language study. Neurology. 2001;57(1):47–54.

    PubMed  CAS  Google Scholar 

  44. Just MA, Carpenter PA, Keller TA, Eddy WF, Thulborn KR. Brain activation modulated by sentence comprehension. Science. 1996;274(5284):114–6.

    PubMed  CAS  Google Scholar 

  45. Ross ED, Mesulam MM. Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Arch Neurol. 1979;36(3):144–8.

    PubMed  CAS  Google Scholar 

  46. Scoville W, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    PubMed  CAS  Google Scholar 

  47. Loddenkemper T, Morris 3rd HH, Perl 2nd J. Carotid artery dissection after the intracarotid amobarbital test. Neurology. 2002;59(11):1797–8.

    PubMed  Google Scholar 

  48. Morris P. Practical neuroangiography. Baltimore: Williams & Wilkins; 1997.

    Google Scholar 

  49. Rausch R, Silfvenius H, Wieser H-G, Dodrill CB, Meador KJ, Jones-Gotman M. Intraarterial amobarbital procedures. In: Engel Jr J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press, Ltd.; 1993. p. 341–57.

    Google Scholar 

  50. Bookheimer S, Schrader LM, Rausch R, Sankar R, Engel Jr J. Reduced anesthetization during the intracarotid amobarbital (Wada) test in patients taking carbonic anhydrase-inhibiting medications. Epilepsia. 2005;46(2):236–43.

    PubMed  CAS  Google Scholar 

  51. Saykin AJ, Sussman NM, Gur RC. Neuropsychological methods in temporal lobectomy: Comparison of traditional batteries and specialized procedures. J Clin Exp Neuropsychol. 1987;9(1):33–4.

    Google Scholar 

  52. Kimura D. Right temporal damage. Arch Neurol. 1963;8:264–71.

    PubMed  CAS  Google Scholar 

  53. Green D, Swets J. Signal detection theory and psychophysics. New York: Krieger; 1974.

    Google Scholar 

  54. Gerschlager W, Lalouschek W, Lehrner J, Baumgartner C, Lindinger G, Lang W. Language-related hemispheric asymmetry in healthy subjects and patients with temporal lobe epilepsy as studied by event-related brain potentials and intracarotid amobarbital test. Electroencephalogr Clin Neurophysiol. 1998;108(3):274–82.

    PubMed  CAS  Google Scholar 

  55. Epstein CM, Woodard JL, Stringer AY, et al. Repetitive transcranial magnetic stimulation does not replicate the Wada test. Neurology. 2000;55(7):1025–7.

    PubMed  CAS  Google Scholar 

  56. Jennum P, Friberg L, Fuglsang-Frederiksen A, Dam M. Speech localization using repetitive transcranial magnetic stimulation. Neurology. 1994;44(2):269–73.

    PubMed  CAS  Google Scholar 

  57. Pascual-Leone A, Gates JR, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 1991;41(5):697–702.

    PubMed  CAS  Google Scholar 

  58. Bishop DVM, Watt H, Papadatou-Pastou M. An efficient and reliable method for measuring cerebral lateralization during speech with functional transcranial Doppler ultrasound. Neuropsychologia. 2009;47(2):587–90.

    PubMed  Google Scholar 

  59. Deppe M, Knecht S, Papke K, et al. Assessment of hemispheric language lateralization: a comparison between fMRI and fTCD. J Cereb Blood Flow Metab. 2000;20(2):263–8.

    PubMed  CAS  Google Scholar 

  60. Haag A, Moeller N, Knake S, et al. Language lateralization in children using functional transcranial Doppler sonography. Dev Med Child Neurol. 2010;52(4):331–6.

    PubMed  Google Scholar 

  61. Knake S, Haag A, Hamer HM, et al. Language lateralization in patients with temporal lobe epilepsy: a comparison of functional transcranial Doppler sonography and the Wada test. Neuroimage. 2003;19(3):1228–32.

    PubMed  Google Scholar 

  62. Knecht S, Deppe M, Ebner A, et al. Noninvasive determination of language lateralization by functional transcranial Doppler sonography: a comparison with the Wada test. Stroke. 1998;29(1):82–6.

    PubMed  CAS  Google Scholar 

  63. Rihs F, Sturzenegger M, Gutbrod K, Schroth G, Mattle HP. Determination of language dominance: Wada test confirms functional transcranial Doppler sonography. Neurology. 1999;52(8):1591–6.

    PubMed  CAS  Google Scholar 

  64. Kamada K, Sawamura Y, Takeuchi F, et al. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery. 2007;60(2):296–305.

    PubMed  Google Scholar 

  65. Gallagher A, Theriault M, Maclin E, et al. Near-infrared spectroscopy as an alternative to the Wada test for language mapping in children, adults and special populations. Epileptic Disord. 2007;9(3):241–55.

    PubMed  Google Scholar 

  66. Gallagher A, Bastien D, Pelletier I, et al. A noninvasive, presurgical expressive and receptive language investigation in a 9-year-old epileptic boy using near-infrared spectroscopy. Epilepsy Behav. 2008;12(2):340–6.

    PubMed  Google Scholar 

  67. Watanabe E, Maki A, Kawaguchi F, et al. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci Lett. 1998;256(1):49–52.

    PubMed  CAS  Google Scholar 

  68. Akanuma N, Reed LJ, Marsden PK, et al. Hemisphere-specific episodic memory networks in the human brain: a correlation study between intracarotid amobarbital test and [(18)F]FDG-PET. J Cogn Neurosci. 2009;21(3):605–22.

    PubMed  Google Scholar 

  69. Duncan JD, Moss SD, Bandy DJ, et al. Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatr Neurosurg. 1997;26(3):144–56.

    PubMed  CAS  Google Scholar 

  70. Hong SB, Roh SY, Kim SE, Seo DW. Correlation of temporal lobe glucose metabolism with the Wada memory test. Epilepsia. 2000;41(12):1554–9.

    PubMed  CAS  Google Scholar 

  71. Hunter KE, Blaxton TA, Bookheimer SY, et al. (15)O water positron emission tomography in language localization: A study comparing positron emission tomography visual and computerized region of interest analysis with the Wada test. Ann Neurol. 1999;45(5):662–5.

    PubMed  CAS  Google Scholar 

  72. Kaplan AM, Bandy DJ, Manwaring KH, et al. Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg. 1999;91(5):797–803.

    PubMed  CAS  Google Scholar 

  73. Pardo JV, Fox PT. Preoperative assessment of the cerebral hemispheric dominance for language with CBF PET. Hum Brain Mapp. 1993;1:57–68.

    Google Scholar 

  74. Tatlidil R, Xiong J, Luther S. Presurgical lateralization of seizure focus and language dominant hemisphere with O-15 water PET imaging. Acta Neurol Scand. 2000;102(2):73–80.

    PubMed  CAS  Google Scholar 

  75. Desmond JE, Sum JM, Wagner AD, et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain. 1995;118(Pt 6):1411–9.

    PubMed  Google Scholar 

  76. Benbadis SR, Binder JR, Swanson SJ, et al. Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang. 1998;65(3):441–6.

    PubMed  CAS  Google Scholar 

  77. Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage. 2003;18(2):423–38.

    PubMed  CAS  Google Scholar 

  78. Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Todd Constable R. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50(10):2225–41.

    PubMed  Google Scholar 

  79. Baciu M, Kahane P, Minotti L, et al. Functional MRI assessment of the hemispheric predominance for language in epileptic patients using a simple rhyme detection task. Epileptic Disord. 2001;3(3):117–24.

    PubMed  CAS  Google Scholar 

  80. Baciu MV, Watson JM, Maccotta L, et al. Evaluating functional MRI procedures for assessing hemispheric language dominance in neurosurgical patients. Neuroradiology. 2005;47(11):835–44.

    PubMed  CAS  Google Scholar 

  81. Bahn MM, Lin W, Silbergeld DL, et al. Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. AJR Am J Roentgenol. 1997;169(2):575–9.

    PubMed  CAS  Google Scholar 

  82. Benson RR, FitzGerald DB, LeSueur LL, et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52(4):798–809.

    PubMed  CAS  Google Scholar 

  83. Brockway JP. Two functional magnetic resonance imaging f(MRI) tasks that may replace the gold standard, Wada testing, for language lateralization while giving additional localization information. Brain Cogn. 2000;43(1–3):57–9.

    PubMed  CAS  Google Scholar 

  84. Chlebus P, Mikl M, Brazdil M, Pazourkova M, Krupa P, Rektor I. fMRI evaluation of hemispheric language dominance using various methods of laterality index calculation. Exp Brain Res. 2007;179(3):365–74.

    PubMed  Google Scholar 

  85. Deblaere K, Boon PA, Vandemaele P, et al. MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology. 2004;46(6):413–20.

    PubMed  CAS  Google Scholar 

  86. Gao X, Jiang C, Lu C, Shen T. Determination of the dominant language hemisphere by functional MRI in patients with temporal lobe epilepsy. Chin Med J. 2001;114(7):711–3.

    PubMed  CAS  Google Scholar 

  87. Hirsch J, Ruge MI, Kim KH, et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47(3):711–21.

    PubMed  CAS  Google Scholar 

  88. Kamada K, Todo T, Masutani Y, et al. Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg. 2007;106(1):90–8.

    PubMed  Google Scholar 

  89. Lehéricy S, Cohen L, Bazin B, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology. 2000;54(8):1625–33.

    PubMed  Google Scholar 

  90. Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg. 1999;91(4):626–35.

    PubMed  CAS  Google Scholar 

  91. Suarez RO, Whalen S, Nelson AP, et al. Threshold-independent functional MRI determination of language dominance: a validation study against clinical gold standards. Epilepsy Behav. 2009;16(2):288–97.

    PubMed  Google Scholar 

  92. Szaflarski JP, Holland SK, Jacola LM, Lindsell C, Privitera MD, Szaflarski M. Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav. 2008;12(1):74–83.

    PubMed  Google Scholar 

  93. Benke T, Köylü B, Visani P, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia. 2006;47(8):1308–19.

    PubMed  Google Scholar 

  94. Gaillard WD, Balsamo L, Xu B, et al. fMRI language task panel improves determination of language dominance. Neurology. 2004;63(8):1403–8.

    PubMed  CAS  Google Scholar 

  95. Rutten GJM, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CWM. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17(1):447–60.

    PubMed  CAS  Google Scholar 

  96. Worthington C, Vincent DJ, Bryant AE, et al. Comparison of functional magnetic resonance imaging for language localization and intracarotid speech Amytal testing in presurgical evaluation for intractable epilepsy: Preliminary results. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):197–201.

    PubMed  CAS  Google Scholar 

  97. Ramsey NF, Sommer IE, Rutten GJ, Kahn RS. Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage. 2001;13(4):719–33.

    PubMed  CAS  Google Scholar 

  98. Fitzgerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: A comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18(8):1529–39.

    PubMed  CAS  Google Scholar 

  99. Biega TJ, Levy LM, Bannout F, Gaillard WD, Potolicchio SJ. Bilateral and independent Broca areas confirmed by Wada test and functional magnetic resonance imaging. J Comput Assist Tomogr. 2009;33(4):560–1.

    PubMed  Google Scholar 

  100. Kho KH, Leijten FSS, Rutten G-J, Vermeulen J, Van Rijen P, Ramsey NF. Discrepant findings for Wada test and functional magnetic resonance imaging with regard to language function: use of electrocortical stimulation mapping to confirm results. Case Rep J Neurosurg. 2005;102(1):169–73.

    Google Scholar 

  101. Baciu MV, Watson JM, McDermott KB, et al. Functional MRI reveals an interhemispheric dissociation of frontal and temporal language regions in a patient with focal epilepsy. Epilepsy Behav. 2003;4(6):776–80.

    PubMed  CAS  Google Scholar 

  102. Kurthen M, Helmstaedter C, Linke DB, Solymosi L, Elger CE, Schramm J. Interhemispheric dissociation of expressive and receptive language functions in patients with complex-partial seizures: An amobarbital study. Brain Lang. 1992;43(4):694–712.

    PubMed  CAS  Google Scholar 

  103. Lee D, Swanson SJ, Sabsevitz DS, et al. Functional MRI and Wada studies in patients with interhemispheric dissociation of language functions. Epilepsy Behav. 2008;13(2):350–6.

    PubMed  Google Scholar 

  104. Ries ML, Boop FA, Griebel ML, et al. Functional MRI and Wada determination of language lateralization: a case of crossed dominance. Epilepsia. 2004;45(1):85–9.

    PubMed  Google Scholar 

  105. Staudt M, Grodd W, Niemann G, Wildgruber D, Erb M, Krageloh-Mann I. Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology. 2001;57(1):122–5.

    PubMed  CAS  Google Scholar 

  106. Spreer J, Quiske A, Altenmuller DM, et al. Unsuspected atypical hemispheric dominance for language as determined by fMRI. Epilepsia. 2001;42(7):957–9.

    PubMed  CAS  Google Scholar 

  107. Wellmer J, Weber B, Weis S, et al. Strongly lateralized activation in language fMRI of atypical dominant patients-implications for presurgical work-up. Epilepsy Res. 2008;80(1):67–76.

    PubMed  Google Scholar 

  108. Medina LS, Bernal B, Ruiz J. Role of functional MR in determining language dominance in epilepsy and nonepilepsy populations: a Bayesian analysis. Radiology. 2007;242(1):94–100.

    PubMed  Google Scholar 

  109. Benson RR, Logan WJ, Cosgrove GR, et al. Functional MRI localization of language in a 9-year-old child. Can J Neurol Sci. 1996;23(3):213–9.

    PubMed  CAS  Google Scholar 

  110. Bookheimer SY, Dapretto M, Karmarkar U. Functional MRI in children with epilepsy. Dev Neurosci. 1999;21(3–5):191–9.

    PubMed  CAS  Google Scholar 

  111. Gaillard WD, Grandin CB, Xu B. Developmental aspects of pediatric fMRI: Considerations for image acquisition, analysis, and interpretation. Neuroimage. 2001;13(2):239–49.

    PubMed  CAS  Google Scholar 

  112. Hertz-Pannier L, Chiron C, Vera P, et al. Functional imaging in the work-up of childhood epilepsy. Childs Nerv Syst. 2001;17(4–5):223–8.

    PubMed  CAS  Google Scholar 

  113. Anderson DP, Harvey AS, Saling MM, et al. FMRI lateralization of expressive language in children with cerebral lesions. Epilepsia. 2006;47(6):998–1008.

    PubMed  Google Scholar 

  114. Baxendale S. The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol. 2002;24(5):664–76.

    PubMed  Google Scholar 

  115. Saykin AJ, Stafiniak P, Robinson LJ, et al. Language before and after temporal lobectomy: specificity of acute changes and relation to early risk factors. Epilepsia. 1995;36(11):1071–7.

    PubMed  CAS  Google Scholar 

  116. Hermann BP, Wyler AR, Somes G, Clement L. Dysnomia after left anterior temporal lobectomy without functional mapping: frequency and correlates. Neurosurgery. 1994;35(1):52–6.

    PubMed  CAS  Google Scholar 

  117. Hermann BP, Perrine K, Chelune GJ, et al. Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology. 1999;13(1):3–9.

    PubMed  CAS  Google Scholar 

  118. Stafiniak P, Saykin AJ, Sperling MR, et al. Acute naming deficits following dominant temporal lobectomy: prediction by age at 1st risk for seizures. Neurology. 1990;40(10):1509–12.

    PubMed  CAS  Google Scholar 

  119. Sabsevitz DS, Swanson SJ, Hammeke TA, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60(11):1788–92.

    PubMed  CAS  Google Scholar 

  120. Anderson KC, Brown CP, Tallal P. Developmental language disorders: evidence for a basic processing deficit. Curr Opin Neurol Neurosurg. 1993;6(1):98–106.

    PubMed  CAS  Google Scholar 

  121. Detre JA, Maccotta L, King D, et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology. 1998;50(4):926–32.

    PubMed  CAS  Google Scholar 

  122. Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: Evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93(16):8660–5.

    PubMed  CAS  Google Scholar 

  123. Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain. 2004;127(Pt 11):2419–26.

    PubMed  Google Scholar 

  124. Trenerry MR, Jack Jr CR, Ivnik RJ, et al. MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology. 1993;43(9):1800–5.

    PubMed  CAS  Google Scholar 

  125. Hermann BP, Wyler AR, Somes G, Berry 3rd AD, Dohan Jr FC. Pathological status of the mesial temporal lobe predicts memory outcome from left anterior temporal lobectomy. Neurosurgery. 1992;31(4):652–6.

    PubMed  CAS  Google Scholar 

  126. Sass KJ, Westerveld M, Buchanan CP, Spencer SS, Kim JH, Spencer DD. Degree of hippocampal neuron loss determines severity of verbal memory decrease after left anteromesiotemporal lobectomy. Epilepsia. 1994;35(6):1179–86.

    PubMed  CAS  Google Scholar 

  127. Helmstaedter C, Elger CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia. 1996;37(2):171–80.

    PubMed  CAS  Google Scholar 

  128. Jokeit H, Ebner A, Holthausen H, et al. Individual prediction of change in delayed recall of prose passages after left-sided anterior temporal lobectomy. Neurology. 1997;49(2):481–7.

    PubMed  CAS  Google Scholar 

  129. Bell BD, Davies KG, Haltiner AM, Walters GL. Intracarotid amobarbital procedure and prediction of postoperative memory in patients with left temporal lobe epilepsy and hippocampal sclerosis. Epilepsia. 2000;41(8):992–7.

    PubMed  CAS  Google Scholar 

  130. Loring DW, Meador KJ, Lee GP, et al. Wada memory asymmetries predict verbal memory decline after anterior temporal lobectomy. Neurology. 1995;45(7):1329–33.

    PubMed  CAS  Google Scholar 

  131. Manno EM, Sperling MR, Ding X, et al. Predictors of outcome after anterior temporal lobectomy: positron emission tomography. Neurology. 1994;44(12):2331–6.

    PubMed  CAS  Google Scholar 

  132. Weinand ME, Carter LP. Surface cortical cerebral blood flow monitoring and single photon emission computed tomography: prognostic factors for selecting temporal lobectomy candidates. Seizure. 1994;3(1):55–9.

    PubMed  CAS  Google Scholar 

  133. Loring DW, Meador KJ, Lee GP, et al. Wada memory performance predicts seizure outcome following anterior temporal lobectomy. Neurology. 1994;44(12):2322–4.

    PubMed  CAS  Google Scholar 

  134. Killgore WD, Glosser G, Casasanto DJ, French JA, Alsop DC, Detre JA. Functional MRI and the Wada test provide complementary information for predicting post-operative seizure control. Seizure. 1999;8(8):450–5.

    PubMed  CAS  Google Scholar 

  135. Rabin ML, Narayan VM, Kimberg DY, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain. 2004;127(Pt 10):2286–98.

    PubMed  Google Scholar 

  136. Mechanic-Hamilton D, Korczykowski M, Yushkevich PA, et al. Hippocampal volumetry and functional MRI of memory in temporal lobe epilepsy. Epilepsy Behav. 2009;16(1):128–38.

    PubMed  Google Scholar 

  137. Szaflarski JP, Holland SK, Schmithorst VJ, Dunn RS, Privitera MD. High-resolution functional MRI at 3T in healthy and epilepsy subjects: hippocampal activation with picture encoding task. Epilepsy Behav. 2004;5(2):244–52.

    PubMed  Google Scholar 

  138. Vannest J, Szaflarski JP, Privitera MD, Schefft BK, Holland SK. Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav. 2008;12(3):410–8.

    PubMed  Google Scholar 

  139. Deblaere K, Backes WH, Tieleman A, et al. Lateralized anterior mesiotemporal lobe activation: semirandom functional MR imaging encoding paradigm in patients with temporal lobe epilepsy–initial experience. Radiology. 2005;236(3):996–1003.

    PubMed  Google Scholar 

  140. Jokeit H, Okujava M, Woermann FG. Memory fMRI lateralizes temporal lobe epilepsy. Neurology. 2001;57(10):1786–93.

    PubMed  CAS  Google Scholar 

  141. Janszky J, Jokeit H, Kontopoulou K, et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia. 2005;46(2):244–50.

    PubMed  Google Scholar 

  142. Bellgowan PS, Binder JR, Swanson SJ, et al. Side of seizure focus predicts left medial temporal lobe activation during verbal encoding. Neurology. 1998;51(2):479–84.

    PubMed  CAS  Google Scholar 

  143. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49(8):1377–94.

    PubMed  Google Scholar 

  144. Dupont S, Van de Moortele PF, Samson S, et al. Episodic memory in left temporal lobe epilepsy: a functional MRI study. Brain. 2000;123(Pt 8):1722–32.

    PubMed  Google Scholar 

  145. Dupont S, Samson Y, Van de Moortele PF, et al. Delayed verbal memory retrieval: a functional MRI study in epileptic patients with structural lesions of the left medial temporal lobe. Neuroimage. 2001;14(5):995–1003.

    PubMed  CAS  Google Scholar 

  146. Richardson MP, Strange BA, Duncan JS, Dolan RJ. Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. Neuroimage. 2003;20 Suppl 1:S112–9.

    PubMed  Google Scholar 

  147. Richardson MP, Strange BA, Dolan RJ. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci. 2004;7(3):278–85.

    PubMed  CAS  Google Scholar 

  148. Köylü B, Trinka E, Ischebeck A, et al. Neural correlates of verbal semantic memory in patients with temporal lobe epilepsy. Epilepsy Res. 2006;72(2–3):178–91.

    PubMed  Google Scholar 

  149. Köylü B, Walser G, Ischebeck A, Ortler M, Benke T. Functional imaging of semantic memory predicts postoperative episodic memory functions in chronic temporal lobe epilepsy. Brain Res. 2008;1223:73–81.

    PubMed  Google Scholar 

  150. Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JDE. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. 2002;43(8):855–63.

    PubMed  Google Scholar 

  151. Branco DM, Suarez RO, Whalen S, et al. Functional MRI of memory in the hippocampus: Laterality indices may be more meaningful if calculated from whole voxel distributions. Neuroimage. 2006;32(2):592–602.

    PubMed  Google Scholar 

  152. Chelune GJ. Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Arch Clin Neuropsychol. 1995;10(5):413–32.

    PubMed  CAS  Google Scholar 

  153. McDonald BC, Saykin AJ, Jobst BC, et al. Brain activation patterns in frontal and temporal memory circuitry following temporal lobe resection for intractable epilepsy: An fMRI study. J Neuropsychiatry Clin Neurosci. 2003;15(2):282.

    Google Scholar 

  154. Saykin AJ, Weaver JB, Burr RB, et al. Functional magnetic resonance imaging in the evaluation of epilepsy surgery patients: A memory activation study. Epilepsia. 1994;35:86.

    Google Scholar 

  155. Swick D, Knight R. Contributions of prefrontal cortex to recognition memory: Electrophysiological and behavioral evidence. Neuropsychology. 1999;13(2):155–70.

    PubMed  CAS  Google Scholar 

  156. Martin A. Automatic activation of the medial temporal lobe during encoding: Lateralized influences of meaning and novelty. Hippocampus. 1999;9(1):62–70.

    PubMed  CAS  Google Scholar 

  157. McDonald BC, Saykin AJ, West JD, Sullivan JE, 3rd, Detre JA. Medial temporal lobe fMRI activation during episodic memory processing in children. Paper presented at: 37th Annual Meeting of the International Neuropsychological Society 2009; Atlanta, GA.

    Google Scholar 

  158. Wellmer J, Weber B, Urbach H, Reul J, Fernandez G, Elger CE. Cerebral lesions can impair fMRI-based language lateralization. Epilepsia. 2009;50(10):2213–24.

    PubMed  Google Scholar 

  159. Liegeois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T. A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy. Neuroimage. 2002;17(4):1861–7.

    PubMed  CAS  Google Scholar 

  160. Fernandez G, Specht K, Weis S, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60(6):969–75.

    PubMed  CAS  Google Scholar 

  161. Rutten GJM, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CWM. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51(3):350–60.

    PubMed  CAS  Google Scholar 

  162. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16(13):4207–21.

    PubMed  CAS  Google Scholar 

  163. Saykin AJ, Gur RC, Sussman NM, O’Connor MJ, Gur RE. Memory deficits before and after temporal lobectomy: Effect of laterality and age of onset. Brain Cogn. 1989;9(2):191–200.

    PubMed  CAS  Google Scholar 

  164. Saykin AJ, Robinson LJ, Stafiniak P, et al. Neuropsychological changes after anterior temporal lobectomy: Acute effects on memory, language, and music. In: Bennett TL, editor. The neuropsychology of epilepsy. New York: Plenum Press; 1992.

    Google Scholar 

  165. Hermann BP, Seidenberg M, Haltiner A, Wyler AR. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36(2):137–45.

    PubMed  CAS  Google Scholar 

  166. Glosser G, Saykin A, Deutsch G, Sperling M, O’Connor M. Patterns of reorganization of memory functions within and between cerebral hemispheres as assessed by the intracarotid amobarbital test. Neuropsychology. 1995;9(4):449–56.

    Google Scholar 

  167. Backes WH, Deblaere K, Vonck K, et al. Language activation distributions revealed by fMRI in post-operative epilepsy patients: differences between left- and right-sided resections. Epilepsy Res. 2005;66(1–3):1–12.

    PubMed  CAS  Google Scholar 

  168. Briellmann RS, Mitchell LA, Waites AB, et al. Correlation between language organization and diffusion tensor abnormalities in refractory partial epilepsy. Epilepsia. 2003;44(12):1541–5.

    PubMed  Google Scholar 

  169. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59(2):335–43.

    PubMed  Google Scholar 

  170. Vlooswijk MCG, Jansen JFA, Majoie HJM, et al. Functional connectivity and language impairment in cryptogenic localization-related epilepsy. Neurology. 2010;75(5):395–402.

    PubMed  CAS  Google Scholar 

  171. Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):1580–91.

    PubMed  Google Scholar 

  172. Liao W, Zhang Z, Pan Z, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE. 2010;5(1):e8525.

    PubMed  Google Scholar 

  173. Voets NL, Adcock JE, Stacey R, et al. Functional and structural changes in the memory network associated with left temporal lobe epilepsy. Hum Brain Mapp. 2009;30(12):4070–81.

    PubMed  Google Scholar 

  174. Zhang Z, Lu G, Zhong Y, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol. 2009;256(10):1705–13.

    PubMed  Google Scholar 

  175. Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci Lett. 2009;458(3):97–101.

    PubMed  CAS  Google Scholar 

  176. Wagner K, Frings L, Halsband U, et al. Hippocampal functional connectivity reflects verbal episodic memory network integrity. Neuroreport. 2007;18(16):1719–23.

    PubMed  Google Scholar 

  177. Frings L, Schulze-Bonhage A, Spreer J, Wagner K. Remote effects of hippocampal damage on default network connectivity in the human brain. J Neurol. 2009;256(12):2021–9.

    PubMed  Google Scholar 

  178. Frings L, Schulze-Bonhage A, Spreer J, Wagner K. Reduced interhemispheric hippocampal BOLD signal coupling related to early epilepsy onset. Seizure. 2009;18(2):153–7.

    PubMed  Google Scholar 

  179. Ketter TA, Kimbrell TA, George MS, et al. Baseline cerebral hypermetabolism associated with carbamazepine response, and hypometabolism with nimodipine response in mood disorders. Biol Psychiatry. 1999;46(10):1364–74.

    PubMed  CAS  Google Scholar 

  180. Matheja P, Weckesser M, Debus O, et al. Drug-induced changes in cerebral glucose consumption in bifrontal epilepsy. Epilepsia. 2000;41(5):588–93.

    PubMed  CAS  Google Scholar 

  181. Roberts MA, Manshadi FF, Bushnell DL, Hines ME. Neurobehavioural dysfunction following mild traumatic brain injury in childhood: A case report with positive findings on positron emission tomography (PET). Brain Inj. 1995;9(5):427–36.

    PubMed  CAS  Google Scholar 

  182. Theodore WH. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia. 1988;29 Suppl 2:S48–55.

    PubMed  CAS  Google Scholar 

  183. Theodore WH. Therapeutics: Pharmacologic. In: Mazziotta JC, Toga AW, Frackowiak RSJ, editors. Brain Mapping: The Disorders. San Diego, CA: Academic Press; 2000. p. 599–612.

    Google Scholar 

  184. Theodore WH, Bromfield E, Onorati L. The effect of carbamazepine on cerebral glucose metabolism. Ann Neurol. 1989;25(5):516–20.

    PubMed  CAS  Google Scholar 

  185. Kimura D. Sex differences in cerebral organization for speech and praxic functions. Can J Psychol. 1983;37(1):19–35.

    PubMed  CAS  Google Scholar 

  186. McGlone J. Sex differences in the cerebral organization of verbal functions in patients with unilateral brain lesions. Brain. 1977;100(4):775–93.

    PubMed  CAS  Google Scholar 

  187. Baxter LC, Saykin AJ, Flashman LA, et al. Sex differences in semantic language processing: A functional MRI study. Brain Lang. 2003;84(2):264–72.

    PubMed  CAS  Google Scholar 

  188. Bookheimer SY, Zeffiro TA, Blaxton T, et al. A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology. 1997;48(4):1056–65.

    PubMed  CAS  Google Scholar 

  189. American Academy of Neurology. AAN Clinical Practice Handbook. St. Paul, MN: American Academy of Neurology; 1995–2003.

    Google Scholar 

  190. Bramham J, Morris RG. Pre- and postoperative intracarotid Amytal procedure: An assessment of validity. Epilepsy Behav. 2003;4(5):556–63.

    PubMed  Google Scholar 

  191. Deblaere K, Backes WH, Hofman P, et al. Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology. 2002;44(8):667–73.

    PubMed  CAS  Google Scholar 

  192. Fernandez G, de Greiff A, von Oertzen J, et al. Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage. 2001;14(3):585–94.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by members of the Partnership for Pediatric Epilepsy Research, which includes the American Epilepsy Society, the Epilepsy Foundation, the Epilepsy Project, Fight Against Childhood Epilepsy and Seizures (f.a.c.e.s.), and Parents Against Childhood Epilepsy (P.A.C.E.). Aspects of this work were also supported by the Indiana Economic Development Corporation (grant #87884), the National Alliance for Medical Image Computing (NAMIC; NIH grant U54 EB005149), and the Hitchcock Foundation. The authors thank their colleagues in the Surgical Epilepsy Programs at Indiana University Medical Center and Dartmouth-Hitchcock Medical Center for their contributions to the data presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenna C. McDonald PsyD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McDonald, B.C., Kean, J., Saykin, A.J. (2011). fMRI Wada Test: Prospects for Presurgical Mapping of Language and Memory. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_25

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics