Skip to main content

Role of Aberrant Cell Cycle in the Growth and Pathogenesis of Glioblastoma

  • Chapter
  • First Online:
Glioblastoma

Abstract

Glioblastoma is the most malignant and unmanageable type of brain tumor with a high rate of mortality. Following cessation of developmental process in the central nervous system (CNS), only the glial cells retain their inherent ability to multiply. Hence, it is not surprising that most of the adult CNS tumors are of glial origin. One of the salient features of the glioblastoma progression is its capability of unlimited proliferation. The contribution of aberrant cell cycle to proliferation of glioblastoma and its pathogenesis has been extensively studied. This chapter attempts to correlate the formation of glial tumors with their progressive acquisition of genetic alterations, which make these progenitor cells predisposed to the mitogenic stimuli leading to gliomagenesis instead of gliogenesis. An attempt is made to correlate and unify the roles of divergent stimuli ranging from growth factors to epigenetic changes on the key signaling moieties such as non-histone tumor suppressors and ubiquitin ligases that affect the cell cycle control leading to the onset of aberrations in the cell cycle. These aberrations lead to uncontrolled cell growth, progression, and pathogenesis of glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death Differ 9:367–393

    Article  CAS  PubMed  Google Scholar 

  • Arap W, Knudsen E, Sewell DA, Sidransky D, Wang JY, Huang HJ, Cavenee WK (1997) Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: Evidence for an Rb-independent growth suppressive pathway. Oncogene 15:2013–2020

    Article  CAS  PubMed  Google Scholar 

  • Aschner M (1998) Immune and inflammatory responses in the CNS: Modulation by astrocytes. Toxicol Lett 102–103:283–287

    Google Scholar 

  • Avni O, Rao A (2000) T cell differentiation: A mechanistic view. Curr Opin Immunol 12:654–659

    Article  CAS  PubMed  Google Scholar 

  • Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C, Rowitch DH, Wong WH, DePinho RA (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci USA 101:8384–8389

    Article  CAS  PubMed  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and Darwinian selection in tumours. Trends Cell Biol 9:M57–M60

    Article  CAS  PubMed  Google Scholar 

  • Campanero MR, Armstrong MI, Flemington EK (2000) CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci USA 97:6481–6486

    Article  CAS  PubMed  Google Scholar 

  • Chasis JA, Schrier SL (1989) Membrane deformability and the capacity for shape change in the erythrocyte. Blood 74:2562–2568

    CAS  PubMed  Google Scholar 

  • Chin L, Pomerantz J, DePinho RA (1998) The INK4a/ARF tumor suppressor: One gene-two products-two pathways. Trends Biochem Sci 23:291–296

    Article  CAS  PubMed  Google Scholar 

  • Collins K, Jacks T, Pavletich NP (1997) The cell cycle and cancer. Proc Natl Acad Sci USA 94:2776–2778

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Holland EC (2003) Astrocyte differentiation states and glioma formation. Cancer J 9:72–81

    Article  CAS  PubMed  Google Scholar 

  • Das A, Banik NL, Ray SK (2007) Differentiation decreased telomerase activity in rat glioblastoma C6 cells and increased sensitivity to IFN-γ and taxol for apoptosis. Neurochem Res 32:2167–2183

    Article  CAS  PubMed  Google Scholar 

  • Das A, Banik NL, Ray SK (2008) N-(4-Hydroxyphenyl) retinamide induced both differentiation and apoptosis in human glioblastoma T98G and U87MG cells. Brain Res 1227:207–215

    Article  CAS  PubMed  Google Scholar 

  • Demontis S, Rigo C, Piccinin S, Mizzau M, Sonego M, Fabris M, Brancolini C, Maestro R (2006) Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Differ 13:335–345

    Google Scholar 

  • Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW (1998) DNA methylation models histone acetylation. Nature 394:842

    Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: Preventing an identity crisis. Science 274:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: The role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    CAS  PubMed  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54

    Article  CAS  PubMed  Google Scholar 

  • Fernando P, Megeney LA (2007) Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 21:8–17

    Article  CAS  PubMed  Google Scholar 

  • Fueyo J, Gomez-Manzano C, Yung WK, Kyritsis AP (1998) The functional role of tumor suppressor genes in gliomas: Clues for future therapeutic strategies. Neurology 51:1250–1255

    CAS  PubMed  Google Scholar 

  • Fujisawa H, Kurrer M, Reis RM, Yonekawa Y, Kleihues P, Ohgaki H (1999) Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter. Am J Pathol 155:387–394

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  • Furusawa C, Kaneko K (2002) Origin of multicellular organisms as an inevitable consequence of dynamical systems. Anat Rec 268:327–342

    Article  PubMed  Google Scholar 

  • Gallo R, Serafini M, Castellani L, Falcone G, Alema S (1999) Distinct effects of Rac1 on differentiation of primary avian myoblasts. Mol Biol Cell 10:3137–3150

    CAS  PubMed  Google Scholar 

  • Garrido C, Kroemer G (2004) Life’s smile, death’s grin: Vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646

    Article  CAS  PubMed  Google Scholar 

  • Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Dashner K, Black PM, Wagner JA, Stiles CD (1995) Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60:168–173

    Article  CAS  PubMed  Google Scholar 

  • Haber DA (1997) Splicing into senescence: The curious case of p16 and p19ARF. Cell 91:555–558

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Nobes CD (2000) Rho GTPases: Molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970

    Article  CAS  PubMed  Google Scholar 

  • Hansson E, Ronnback L (1994) Astroglial modulation of synaptic transmission. Perspect Dev Neurobiol 2:217–223

    CAS  PubMed  Google Scholar 

  • Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: It’s not just for mitosis any more. Genes Dev 16:2179–2206

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  • Henson JW, Schnitker BL, Correa KM, von Deimling A, Fassbender F, Xu HJ, Benedict WF, Yandell DW, Louis DN (1994) The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 36:714–721

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704

    Article  CAS  PubMed  Google Scholar 

  • Hermanson M, Funa K, Koopmann J, Maintz D, Waha A, Westermark B, Heldin CH, Wiestler OD, Louis DN, von Deimling A, Nister M (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 56:164–171

    CAS  PubMed  Google Scholar 

  • Holland EC (2001) Gliomagenesis: Genetic alterations and mouse models. Nat Rev Genet 2:120–129

    Article  CAS  Google Scholar 

  • Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    Article  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  CAS  Google Scholar 

  • Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK (2002) E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC (Cdh1). Nat Cell Biol 4:358–366

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev 18:152–158

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  CAS  PubMed  Google Scholar 

  • Janardhanan R, Banik NL, Ray SK (2008) N-(4-Hydroxyphenyl) retinamide induced differentiation with repression of telomerase and cell cycle to increase interferon-gamma sensitivity for apoptosis in human glioblastoma cells. Cancer Lett 261:26–36

    Article  CAS  PubMed  Google Scholar 

  • Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci USA 96:2077–2081

    Article  CAS  PubMed  Google Scholar 

  • Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222

    CAS  PubMed  Google Scholar 

  • Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  • Klochendler-Yeivin A, Yaniv M (2001) Chromatin modifiers and tumor suppression. Biochim Biophys Acta 1551:M1–M10

    CAS  PubMed  Google Scholar 

  • Konopka G, Bonni A (2003) Signaling pathways regulating gliomagenesis. Curr Mol Med 3:73–84

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Hall PA (1997) MDM2–arbiter of p53’s destruction. Trends Biochem Sci 22:372–374

    Article  CAS  PubMed  Google Scholar 

  • Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Lehman NL, Tibshirani R, Hsu JY, Natkunam Y, Harris BT, West RB, Masek MA, Montgomery K, van de Rijn M, Jackson PK (2007) Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am J Pathol 170:1793–1805

    Article  CAS  PubMed  Google Scholar 

  • Lotem J, Sachs L (1981) In vivo inhibition of the development of myeloid leukemia by injection of macrophage- and granulocyte-inducing protein. Int J Cancer 28:375–386

    Article  CAS  PubMed  Google Scholar 

  • Lotem J, Sachs L (1984) Control of in vivo differentiation of myeloid leukemic cells. IV. Inhibition of leukemia development by myeloid differentiation-inducing protein. Int J Cancer 33:147–154

    Article  CAS  PubMed  Google Scholar 

  • Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53:11–21

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Lundberg AS, Hahn WC, Gupta P, Weinberg RA (2000) Genes involved in senescence and immortalization. Curr Opin Cell Biol 12:705–709

    Article  CAS  PubMed  Google Scholar 

  • Mack GS (2006) Epigenetic cancer therapy makes headway. J Natl Cancer Inst 98:1443–1444

    PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  CAS  PubMed  Google Scholar 

  • Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF (βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4:813–826

    Article  CAS  PubMed  Google Scholar 

  • Martin-Blanco E (2000) p38 MAPK signalling cascades: Ancient roles and new functions. Bioessays 22:637–645

    Article  CAS  PubMed  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  CAS  PubMed  Google Scholar 

  • Michael D, Oren M (2002) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Okouchi Y, Ueki T, Asai K, Isobe I, Eksioglu YZ, Kato T, Hasegawa Y, Kuroda Y (1994) Astrocytic contribution to functioning synapse formation estimated by spontaneous neuronal intracellular Ca2+ oscillations. Brain Res 659:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10:699–703

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa R, Furnari FB, Lin H, Arap W, Berger MS, Cavenee WK, Su Huang HJ (1995) Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res 55:1941–1945

    CAS  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2005a) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2005b) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: A population-based study. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, Schuler D, Probst-Hensch NM, Yasargil MG, Yonekawa Y, Lutolf UM, Kleihues P, Ohgaki H (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 108:49–56

    Article  PubMed  Google Scholar 

  • Qu G, Yan H, Strauch AR (1997) Actin isoform utilization during differentiation and remodeling of BC3H1 myogenic cells. J Cell Biochem 67:514–527

    Article  CAS  PubMed  Google Scholar 

  • Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53:2736–2739

    CAS  PubMed  Google Scholar 

  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP (1994) Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: Preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54:4299–4303

    CAS  PubMed  Google Scholar 

  • Reimann JD, Gardner BE, Margottin-Goguet F, Jackson PK (2001) Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev 15:3278–3285

    Article  CAS  PubMed  Google Scholar 

  • Sachs L (1986) Cell differentiation and malignancy. Cell Biophys 9:225–242

    CAS  PubMed  Google Scholar 

  • Sachs L (1987) The Wellcome Foundation lecture 1986. The molecular regulators of normal and leukaemic blood cells. Proc R Soc Lond B Biol Sci 231:289–312

    Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML, Hess KR, Myers JN, Hong YK, Yung WK, Steck PA (1999) Differential expression of MMAC/PTEN in glioblastoma multiforme: Relationship to localization and prognosis. Cancer Res 59:1820–18244

    CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B (1992) Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846–847

    Article  CAS  PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JA, Fukumoto M, Igarashi K, Oda Y, Kikuchi H, Hatanaka M (1992) Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J Neurosurg 76:792–798

    Article  CAS  PubMed  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Thomas G, Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787

    Article  CAS  PubMed  Google Scholar 

  • Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56:150–153

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, Kleihues P, Chung RY, Wiestler OD, Seizinger BR (1992) p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52:2987–2990

    Google Scholar 

  • Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189

    CAS  PubMed  Google Scholar 

  • Weber GF, Menko AS (2005) The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation. J Biol Chem 280:22135–22145

    Article  CAS  PubMed  Google Scholar 

  • Weih F, Nitsch D, Reik A, Schutz G, Becker PB (1991) Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. EMBO J 10:2559–2567

    CAS  PubMed  Google Scholar 

  • Weil M, Raff MC, Braga VM (1999) Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr Biol 9:361–364

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  CAS  PubMed  Google Scholar 

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    Article  CAS  PubMed  Google Scholar 

  • Ye ZC, Sontheimer H (1998) Glial glutamate transport as target for nitric oxide: Consequences for neurotoxicity. Prog Brain Res 118:241–251

    Article  CAS  PubMed  Google Scholar 

  • Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616–626

    Article  CAS  PubMed  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Janardhanan, R., Banik, N.L., Ray, S.K. (2010). Role of Aberrant Cell Cycle in the Growth and Pathogenesis of Glioblastoma. In: Ray, S. (eds) Glioblastoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0410-2_6

Download citation

Publish with us

Policies and ethics