Skip to main content

Molecular Dynamics Simulations of Nanodiamond Graphitization

  • Chapter
  • First Online:
Nanodiamonds

Abstract

Nanocarbons have attracted great interest due to their potential applications in nanoscale devices, medicine, lubrication and composite materials. Recently, nanocarbons with a variety of morphologies are reported to have been obtained after annealing nanodiamonds above 1,200 K. Here, we have investigated the transformation of 2–5 nm nanodiamond particles upon annealing using molecular dynamics simulations. The simulations show that nanodiamonds undergo annealing-induced graphitization by a progressive sp3 to sp2 conversion of carbon atoms that begins at the surface. The extent of this conversion depends on the size and morphology of the nanodiamond. It is found that while graphitization proceeds easily from {111} surfaces towards the core, the presence of {100} surfaces leads to residual sp3 carbon atoms. We will also discuss different steps involved in nanodiamond graphitization, the formation of onion-like carbon and vibrational spectra of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  Google Scholar 

  2. Iijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  3. Gruen DM, Liu S, Krauss AR, Luo J, Pan X (1994) Appl Phys Lett 64:1502–1504

    Article  Google Scholar 

  4. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165–170

    Article  Google Scholar 

  5. Ugarte D (1992) Nature 359:707–709

    Article  Google Scholar 

  6. Lewis RS, Tang M, Wacker JF, Anders E, Steel E (1987) Nature 326:160–162

    Article  Google Scholar 

  7. Dai ZR, Bradley JP, Joswiak DJ, Brownlee DE, Hill HGM, Genge MJ (2002) Nature 418:157–159

    Article  Google Scholar 

  8. Greiner NR, Philips DS, Johnson JD, Volk F (1988) Nature 333:440–442

    Article  Google Scholar 

  9. Vereschagin AL, Sakovich GV, Komarov VF, Petrov EA (1993) Diam Relat Mater 3:160–162

    Article  Google Scholar 

  10. Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov ShK, Butenko YuV (1994) Carbon 32:873–882

    Article  Google Scholar 

  11. Artemov AS (2004) Phys Solid State 46:687–695

    Article  Google Scholar 

  12. Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Diam Relat Mater 16:1213–1217

    Article  Google Scholar 

  13. Dolmatov VY (2001) Russ Chem Rev 70:607–626

    Article  Google Scholar 

  14. Schrand AM, Huang H, Carlson C, Schlager JJ, Sawa EO, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7

    Article  Google Scholar 

  15. Khabashesku VN, Margrave JL, Barrera EV (2005) Diam Relat Mater 14:859–866

    Article  Google Scholar 

  16. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) J Am Chem Soc 126:6850–6851

    Article  Google Scholar 

  17. Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314

    Article  Google Scholar 

  18. Narayan RJ, Wei W, Jin C, Andara M, Agarwal A, Gerhardt RA, Shih CC, Shih CM, Lin SJ, Su YY, Ramamurti Y, Singh RN (2006) Diam Relat Mater 15:1935–1940

    Article  Google Scholar 

  19. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605

    Article  Google Scholar 

  20. Kuznetsov VL, Chuvilina AL, Butenkoa YV, Stankusb SV, Khairulinb RA, Gutakovskiic AK (1998) Chem Phys Lett 289:353–360

    Article  Google Scholar 

  21. Tomita S, Burian A, Dore JC, LeBolloch D, Fujii M, Hayashi S (2002) Carbon 40:1469–1474

    Article  Google Scholar 

  22. Kuznetsov VL, Chuvilin AL, Butenko YV, Malkov IY, Titov VM (1994) Chem Phys Lett 222:343–348

    Article  Google Scholar 

  23. Aleksenskii AE, Baidakova MV, Vul’ A Ya, Siklitskii VI (1999) Phys Solid State 41:668–671

    Article  Google Scholar 

  24. Banhart F, Fuller T, Redlich Ph, Ajayan PM (1997) Chem Phys Lett 269:349–355

    Article  Google Scholar 

  25. Mykhaylyk OO, Solonin YM, Batchelder DN, Brydson R (2005) J Appl Phys 97:074302

    Article  Google Scholar 

  26. Fugaciu F, Herman H, Deifert G (1999) Phys Rev B 60:10711–10714

    Article  Google Scholar 

  27. Lee GD, Wang CZ, Yu J, Yoon E, Ho KM (2003) Phys Rev Lett 91(26):265–701

    Google Scholar 

  28. Bro’Dka A, Zerda TW, Burian A (2006) Diam Relat Mater 15:1818–1821

    Article  Google Scholar 

  29. Leyssale J-M, Vignoles GL (2008) Chem Phys Lett 454:299–304

    Article  Google Scholar 

  30. Barnard AS, Russo SP, Snook IK (2003) Diam Relat Mater 12:1867–1872

    Article  Google Scholar 

  31. Barnard AS, Russo SP, Snook IK (2003) Phys Rev B 68:073406

    Article  Google Scholar 

  32. Barnard AS (2006) Stability of Nanodiamond In: Shenderova OA, Gruen DM (eds),Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew Publishing, New York, pp 117–154

    Google Scholar 

  33. Hu Y, Shenderova OA, Hu Z, Padgett CW, Brenner DW (2006) Rep Prog Phys 6:1847–1895

    Article  Google Scholar 

  34. Raty JY, Galli G (2003) Nat Mater 2:792–795

    Article  Google Scholar 

  35. Raty JY, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401

    Article  Google Scholar 

  36. Barnard AS, Sternberg M (2007) J Mater Chem 17:4811–4819

    Article  Google Scholar 

  37. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys: Condens Matter 14:783–802

    Article  Google Scholar 

  38. Mao Z, Garg A, Sinnott SB (1999) Nanotechnology 3:273–277

    Article  Google Scholar 

  39. Adelman SA, Doll JD (1976) J Chem Phys 64:2375–2388

    Article  Google Scholar 

  40. Tyler T, Zhirnov VV, Kvit AV, Kang D, Hren JJ (2003) Appl Phys Lett 82:2904–2906

    Article  Google Scholar 

  41. Pandey KC (1982) Phys Rev B 25:4338–4341

    Article  Google Scholar 

  42. Zapol P, Curtiss LA, Tamura H, Gordon MS (2004) Theoretical studies of growth reactions on diamond surfaces In: Curtiss LA, Gordon MS (eds) Computational materials chemistry: methods and applications. Kluwer Academic Publishers, London, pp 266–307

    Google Scholar 

  43. Tomita S, Fuji M, Hayashi S (2002) Phys Rev B 66:245–424

    Google Scholar 

  44. Tomita SS, Fuji M, Hayashi S, Yamamoto K (1999) Chem Phys Lett 305:225–229

    Article  Google Scholar 

  45. Vita AD, Galli G, Canning A, Car R (1996) Nature 379:523–526

    Article  Google Scholar 

  46. Wang CZ, Ho KM, Shirk MD, Molian PA (2000) Phys Rev Lett 85:4092–4095

    Article  Google Scholar 

  47. Jungnickel G, Porezag D, Frauenheim Th, Heggie MI, Lambrecht WRL, Segall B, Angus JC (1996) Phys Status Solidi A 154:109–125

    Article  Google Scholar 

  48. Kuznetsov VL, Zilberberg IL, Butenko YuV, Chuvilin AL, Segall B (1999) J Appl Phys 86:863–870

    Article  Google Scholar 

  49. Qian J, Pantea C, Huang J, Zerda TW, Zhao Y (2004) Carbon 42:2691–2697

    Article  Google Scholar 

  50. Qiao Z, Li J, Zhao N, Shi C, Nash P (2006) Scr Mater 54:225–229

    Article  Google Scholar 

  51. Pantea C, Qian J, Voronin GA, Zerda TW (2002) J Appl Phys 91:1957–1962

    Article  Google Scholar 

  52. Chen PW, Ding YS, Chen Q, Huang FL, Yun SR (2000) Diam Relat Mater 9:1722–1725

    Article  Google Scholar 

  53. Xu NS, Chen J, Deng SZ (2002) Diam Relat Mater 11:249–256

    Article  Google Scholar 

  54. Russo SP, Barnard AS, Snook IK (2003) Surf Rev Lett 10:233–239

    Article  Google Scholar 

  55. Banhart F, Ajayan PM (1996) Nature 382:433–435

    Article  Google Scholar 

  56. Banhart F (1997) J Appl Phys 81:3440–3445

    Article  Google Scholar 

  57. Davison BN, Picket W (1994) Phys Rev B 49:14770

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy’s Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Use of computer resources from Argonne National Laboratory Computer Resource Center and US DOE National Energy Research Supercomputer Center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashishekar P. Adiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Adiga, S.P., Curtiss, L.A., Gruen, D.M. (2010). Molecular Dynamics Simulations of Nanodiamond Graphitization. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics