Skip to main content

Detonation Nanodiamond Particles Processing, Modification and Bioapplications

  • Chapter
  • First Online:
Nanodiamonds

Abstract

This chapter will detail the requirements of modern detonation nanodiamonds (DNDs) intended for biomedical applications, beginning with DND material preparations and followed by bio-related applications developed at International Technology Center. DNDs are one of the most commercially promising nanodiamonds with a primary particle size of 4–5 nm, produced by detonation of carbon-containing explosives. The structural diversity of DNDs will be described, which depend upon synthesis conditions, postsynthesis processes, and modifications. Bioapplications reviewed include ballistic delivery of bio-functionalized DND into cells, photoluminescent biolabeling, biotarget capturing and collection by electrophoretic manipulation of DNDs, and health care applications. DNDs are advantageous when compared with the other types of nanoparticles due to DND large scale synthesis, small primary particle size, facile surface functionalization, stable photoluminescence as well as biocompatibility. Currently, biotechnology applications have shown that NDs can be used for bioanalytical purposes such as protein purification or fluorescent biolabeling, while research is in the developing stages for DNDs applied as diagnostic probes, delivery vehicles, enterosorbents and advanced medical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shenderova O, Gruen D (2006) Ultrananocrystalline diamond. William-Andrew, New York

    Google Scholar 

  2. Danilenko VV (2004) Phys Solid State 46:595–599

    Article  Google Scholar 

  3. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605

    Article  Google Scholar 

  4. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Proc Natl Acad Sci U S A 104:727–732

    Article  Google Scholar 

  5. Sonnefraud Y, Cuche A, Faklaris O, Boudou JP, Sauvage T, Roch JF, Treussart F, Huant S (2008) Opt Lett 33:611–613

    Article  Google Scholar 

  6. Decarli PS, Jamieson JC (1961) Science 133:1821–1822

    Article  Google Scholar 

  7. Danilenko VV (in press) Solid State Phys

    Google Scholar 

  8. Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314

    Article  Google Scholar 

  9. Bondar VS, Pozdnyakova IO, Puzyr AP (2004) Phys Solid State 46:758–760

    Article  Google Scholar 

  10. Huang LC, Chang HC (2004) Langmuir 20:5879–5884

    Article  Google Scholar 

  11. Kong XL, Huang LC, Hsu CM, Chen WH, Han CC, Chang HC (2005) Anal Chem 77:259–265

    Article  Google Scholar 

  12. Kong X, Huang LC, Liau SC, Han CC, Chang HC (2005) Anal Chem 77:4273–4277

    Article  Google Scholar 

  13. Grichko V, Grishko V, Shenderova O (2007) Nanobiotechnology 2:37–42

    Article  Google Scholar 

  14. Gibson N, Shenderova O, Puzyr A, Purtov K, Grichko V, Luo TJM, Fitgerald Z, Bondar V, Brenner D (2007) For detoxification. In: Technical proceedings of the 2007 NSTI NanoTechnology Conference and Trade Show

    Google Scholar 

  15. Puzyr AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007) Dokl BiochemBiophys 417:299–301

    Article  Google Scholar 

  16. Schwertfeger H, Fokin AA, Schreiner PR (2008) Angew Chem Int Ed Engl 47:1022–1036

    Article  Google Scholar 

  17. Dahl JE, Liu SG, Carlson RMK (2003) Science 299:96–99

    Article  Google Scholar 

  18. Carlson RMK, Dahl JEP, Liu SG (2005) Diamond molecules found in petroleum. In: Gruen DM, Vul A, Shenderova OA (eds) Synthesis, properties, and applications of ultrananocrystalline diamond. Dordrecht, The Netherlands, Springer

    Google Scholar 

  19. Freitas RA (2003)Nanomedicine. vol IIA. Landes Bioscience: Texas, pp 348

    Google Scholar 

  20. Larionova I, Kuznetsov V, Frolov A, Shenderova O, Moseenkov S, Mazov I (2006) Diam Relat Mater 15:1804–1808

    Article  Google Scholar 

  21. Krueger A, Boedeker T (2008) Diam Relat Mater 17:1367–1370

    Article  Google Scholar 

  22. Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Nano Letters 7:2588–3591

    Article  Google Scholar 

  23. Krueger A, Stegk J, Liang YJ, Lu L, Jarre G (2008) Langmuir 24:4200–4204

    Article  Google Scholar 

  24. Dolmatov V (2003) Ultradispersed Diamonds of Detonation Synthesis. SPbGTU, Sank-Petersburg

    Google Scholar 

  25. Vereschagin AL (2001) Barnaul, Russian Federation, Altai State Technical University; Vereschagin AL (2005) Altay Region, Barnaul State Technical University

    Google Scholar 

  26. Danilenko, V.V. (2003), ed. Energoatomizdat.

    Google Scholar 

  27. Gruen DM, Shenderova OA, Vul AY (2005) Synthesis, properties, and applications of ultrananocrystalline diamond. Springer, Dordrecht, Netherlands

    Book  Google Scholar 

  28. Schrand AM, Hens SC, Shenderova OA (2009) Crit Rev Solid State Mater Sci vol 34, 18–74

    Article  Google Scholar 

  29. Shenderova OA, Zhirnov VV, Brenner DW (2002) Crit Rev Solid State Mater Sci 27:227–356

    Article  Google Scholar 

  30. Dolmatov VY (2001) Russ Chem Rev 70:607–626

    Article  Google Scholar 

  31. Holt KB (2007) Philos Transact A Math Phys Eng Sci 365:2845–2861

    Article  Google Scholar 

  32. Krueger A (2008) Adv Mater 20:2445

    Article  Google Scholar 

  33. Viecelli JA, Ree FH (2000) J Appl Phys 88:683–690

    Article  Google Scholar 

  34. Raty JY, Galli G, Bostedt C, Van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401

    Article  Google Scholar 

  35. Dolmatov V (2008) In: 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, Russia

    Google Scholar 

  36. Rabeau JR, Stacey A, Rabeau A, Prawer S, Jelezko F, Mirza I, Wrachtrup J (2007) Nano Letters 7:3433–3437

    Article  Google Scholar 

  37. Smith BR, Inglis DW, Sandnes B, Rabeau JR, Zvyagin AV, Gruber D, Noble CJ, Vogel R, Οsawa E, Plakhotnik T vol 5, 1649–1653

    Google Scholar 

  38. Gubarevich (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, Russia

    Google Scholar 

  39. Padalko V (private communication)

    Google Scholar 

  40. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642

    Article  Google Scholar 

  41. Petrov I, Shenderova O (2006) Chapter 16: history of Russian patents on detonation nanodiamonds. In: Shenderova O, Gruen D (eds) Ultrananocrystalline diamond. Norwich, UK, William-Andrew

    Google Scholar 

  42. Petrov I, Shenderova O, Grishko V, Grichko V, Tyler T, Cunningham G, Mcguire G (2007) Diam Relat Mater 16:2098–2103

    Article  Google Scholar 

  43. Chiganov AS (2004) Phys Solid State 46:620–621

    Article  Google Scholar 

  44. Dolmatov VY, Veretennikova MV, Marchukov VA, Sushchev VG (2004) Phys Solid State 46:611–615

    Article  Google Scholar 

  45. Gubarevich T, Larionova IS, Kostukova IN, Ryzko LS, Tyricuna VF, (1992) RU 1770272

    Google Scholar 

  46. Pavlov EV, Skrjabin JA (1994) Method for removal of impurities of non-diamond carbon and device for its realization. 1994: Russia

    Google Scholar 

  47. Cunningham G, Panich AM, Shames AI, Petrov I, Shenderova O (2008) Diam Relat Mater 17:650–654

    Article  Google Scholar 

  48. Shenderova O (unpublished)

    Google Scholar 

  49. Mitev D, Dimitrova R, Spassova M, Minchev C, Stavrev S (2007) Diam Relat Mater 16:776–780

    Article  Google Scholar 

  50. Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G (2006) Diam Relat Mater 15:1799–1803

    Article  Google Scholar 

  51. Mochalin V, Behler K, Stravato A, Giammarco J, Gogotsi Y, Picardi C, Kalter M (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, Russia

    Google Scholar 

  52. Larionova IS, Molostov IN, Kulagina LS, Komarov VF, RU 2168462.

    Google Scholar 

  53. Timofeev VT, Detkov PY (2005) Atom 4:1

    Google Scholar 

  54. Krueger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul AY, Osawa E (2005) Carbon 43:1722–1730

    Article  Google Scholar 

  55. Shenderova O, Larinova I, Petrov I, Hens S et al (in preparation)

    Google Scholar 

  56. Gordeev SK, Kruglikova S, Gordeev SK, Kruglikova S (2004) Superhard Mater 6:34

    Google Scholar 

  57. Xu XY, Yu ZM, Zhu YW, Wang BC (2005) J Solid State Chem 178:688–693

    Article  Google Scholar 

  58. Spitsyn B, Davidson J, Gradoboev M, Galushko T, Serebryakova N, Karpukhina T, Kulakova I, Melnik M (2006) Diam Relat Mater 15:296

    Article  Google Scholar 

  59. Yeganeh M, Coxon PR, Brieva AC, Dhanak VR, Siller L, Butenko YV (2007) Phys Rev B 75:155404

    Article  Google Scholar 

  60. Chukhaeva SI, Detkov P, Tkachenko A, Toropov A (1998) Sverkhtv Mater 4:29

    Google Scholar 

  61. Chukhaeva SI (2004) Phys Solid State 46:625–628

    Article  Google Scholar 

  62. Grichko V, Tyler T, Grishko VI, Shenderova O (2008) Nanotechnology 19:225201

    Article  Google Scholar 

  63. Iakoubovskii K, Mitsuishi K, Furuya K (2008) Nanotechnology 19:155705

    Article  Google Scholar 

  64. Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L (2007) Phys Status Solidi A 204:2881–2887

    Article  Google Scholar 

  65. Zhu YW, Xu F, Shen JL, Wang BC, Xu XY, Shao JB (2007) J Mater Sci Tech 23:599–603

    Google Scholar 

  66. Morita Y, Takimoto T, Yamanaka H, Kumekawa K, Morino S, Aonuma S, Kimura T, Komatsu N (2008) Small 12:2154–2157

    Article  Google Scholar 

  67. Ozawa M, Inaguma M, Takahashi M, Kataoka F, Kruger A, Osawa E (2007) Adv Mater 19:1201

    Article  Google Scholar 

  68. Ozerin A, Kurkin TS, Ozerina LA, Dolmatov VY (2008) Crystallogr Rep 53:60

    Article  Google Scholar 

  69. Titov VM, Tolochko BP, Ten KA, Lukyanchikov LA, Pruuel ER (2007) Diam Relat Mater 16:2009–2013

    Article  Google Scholar 

  70. Danilenko VV (2006) Superhard Mater N5:9

    Google Scholar 

  71. Osawa E (2007) Diam Relat Mater 16:2018–2022

    Article  Google Scholar 

  72. Huang HJ, Dai LM, Wang DH, Tan LS, Osawa E (2008) J Mater Chem 18:1347–1352

    Article  Google Scholar 

  73. Xu K, Xue QJ (2007) Diam Relat Mater 16:277–282

    Article  Google Scholar 

  74. Gibson N, Shenderova O, Luo TJM, Moseenkov S, Bondar V, Puzyr A, Purtov K, Fitzgerald Z, Brenner D (2008) Diam Relat Mater 2009 vol 18, 620–626

    Article  Google Scholar 

  75. Hens, S., Wallen, S., and Shenderova, O., (2007) U.S. Patent Application: Nanodiamond fractionation and products thereof.

    Google Scholar 

  76. Bondar VS, Puzyr AP (2004) Phys Solid State 46:716–719

    Article  Google Scholar 

  77. Puzyr AP, Bondar VS (2003) RU patent 2252192

    Google Scholar 

  78. Krueger A (2008) Chem Eur J 14:1382–1390

    Article  Google Scholar 

  79. Krueger A, Liang YJ, Jarre G, Stegk J (2006) J Mater Chem 16:2322–2328

    Article  Google Scholar 

  80. Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Diam Relat Mater 17:1858–1866

    Article  Google Scholar 

  81. Ray MA, Tyler T, Hook B, Martin A, Cunningham G, Shenderova O, Davidson JL, Howell M, Kang WP, Mcguire G (2007) Diam Relat Mater 16:2087–2089

    Article  Google Scholar 

  82. Chiganova GA (2000) Colloid Journal 62:238–243

    Google Scholar 

  83. Xu X, Yu Z, Zhu Y, Wang B (2005) Diam Relat Mater 14:206–212

    Article  Google Scholar 

  84. Boehm HP (2002) Carbon 40:145–149

    Article  Google Scholar 

  85. Fuente E, Menendez JA, Suarez D, Montes-Moran MA (2003) Langmuir 19:3505–3511

    Article  Google Scholar 

  86. Donnet JB, Boehm HP, Stoeckli F (2002) Carbon 40:145–149

    Article  Google Scholar 

  87. Montes-Moran MA, Suarez D, Menendez JA, Fuente E (2004) Carbon 42:1219–1225

    Article  Google Scholar 

  88. Shenderova O, Grichko V, Hens S, Walsh J (2007) Diam Relat Mater 16:2003–2008

    Article  Google Scholar 

  89. Aleksenskii AE, Baidakova MV, Vul AY, Siklitskii VI (1999) Phys Solid State 41:668–671

    Article  Google Scholar 

  90. Turner S, Lebedev OI, Shenderova O, Vasov II, Verbeeck J, Tendeloo GV (2009) Adv Funct Mater, 19:2116–2124

    Article  Google Scholar 

  91. Sque S, Jones R, Briddon P (2006) Phys Rev B 73:85313

    Article  Google Scholar 

  92. Petrini D, Larsson K (2007) J Phys Chem C 111:796–801

    Google Scholar 

  93. Petrini D, Larsson K (2008) J Phys Chem C 112:4811–4819

    Google Scholar 

  94. Kern G, Hafner J (1997) Phys Rev B 56:4203

    Article  Google Scholar 

  95. Barnard AS, Stenberg M (2007) J Mater Chem 17:4811–4819

    Article  Google Scholar 

  96. Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Vonborczyskowski C (1997) Science 276:2012–2014

    Article  Google Scholar 

  97. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, Lim TS, Tzeng YK, Fang CY, Han CC, Chang HC, Fann W (2008) Nat Nanotechnol 3:284–288

    Article  Google Scholar 

  98. Barnard AS, Sternberg M (2007) Diam Relat Mater 16:2078–2082

    Article  Google Scholar 

  99. Barnard AS, Sternberg M (2008) J Comput Theor Nanoscience 5:1–7

    Article  Google Scholar 

  100. Borjanovic V, Lawrence WG, Hens S, Jaksic M, Zamboni I, Edson C, Vlasov V, Vlasov V, Shenderova O, Mcguire G (2008) Nanotechnology 19(45):455701

    Article  Google Scholar 

  101. Kvit AV, Zhirnov VV, Tyler T, Hren JJ (2004) Compos B Eng 35:163–166

    Article  Google Scholar 

  102. Schrand AM (2007) Characterization and in vitro biocompatibility of engineered nanomaterials in The School of Engineering. 2007. University of Dayton, Dayton, p 276

    Google Scholar 

  103. Schrand A, Braydich-Stolle Laura K, Schlager John J, Hussain Saber M, Liming Dai (2008)

    Google Scholar 

  104. Hens SC, Cunningham G, Grichko V, Tyler T, Moseenkov S, Kuznetsov V, Shenderova GMO (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, Russia

    Google Scholar 

  105. Hughes MP (2000) Nanotechnology 11:124–132

    Article  Google Scholar 

  106. Zhitomirsky I (2002) Adv Colloid Interface Sci 97:279–317

    Article  Google Scholar 

  107. Alimova AN, Chubun NN, Belobrov PI, Detkov PY, Zhirnov VV (1999) J Vac Sci Tech B 17:715–718

    Article  Google Scholar 

  108. Zhitomirsky I (1998) Mater Lett 37:72–78

    Article  Google Scholar 

  109. Wu VWK (2006) Chem Lett 35:1380–1381

    Article  Google Scholar 

  110. Yang WS, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi J, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) Nat Mater 1:253–257

    Article  Google Scholar 

  111. Nebel CE, Rezek B, Shin D, Uetsuka H, Yang N (2007) J Phys D Appl Phys 40:6443–6466

    Article  Google Scholar 

  112. Williams AC, Barry BW (2004) Adv Drug Deliv Rev 56:603–618

    Article  Google Scholar 

  113. Koo J, Kleinstreuer C (2005) Int Comm Heat Mass Tran 32:1111–1118

    Article  Google Scholar 

  114. Koo J, Kleinstreuer C (2005) Int J Heat Mass Tran 48:2652–2661

    Article  MATH  Google Scholar 

  115. Winters MA, Knutson BL, Debenedetti PG, Sparks HG, Przybycien TM, Stevenson CL, Prestrelski SJ (1996) J Pharm Sci 85:586–594

    Article  Google Scholar 

  116. Freitas Ra J (2003) Nanomedicine Volume IIA: Biocompatibility 2003. Landes Bioscience, Georgetown, TX

    Google Scholar 

  117. Grichko V, Grishko V, Shenderova O (2006) Nanobiotechnology 2:37–42

    Article  Google Scholar 

  118. Perevedentseva E, Cheng CY, Chung PH, Tu JS, Hsieh YH, Cheng CL (2007) Nanotechnology 18:315102

    Article  Google Scholar 

  119. Phillips TD (1999) Toxicol Sci 52:118–126

    Google Scholar 

  120. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108

    Article  Google Scholar 

  121. Hauert R (2003) Diam Relat Mater 12:583–589

    Article  Google Scholar 

  122. Amaral M, Abreu CS (2007) Diam Relat Mater 16:790–795

    Article  Google Scholar 

  123. Mitura S, Mitura A, Niedzielski P, Couvrat P (1999) Chaos, Solitons Fractals 10:2165–2176

    Article  Google Scholar 

  124. Bakowicz-Mitura K, Bartosz G, Mitura S (2007) Surf Coating Techn 201:6131–6135

    Article  Google Scholar 

  125. Xiao XC, Wang J, Liu C, Carlisle JA, Mech B, Greenberg R, Guven D, Freda R, Humayun MS, Weiland J, Auciello O (2006) J Biomed Mater Res B 77B:273–281

    Article  Google Scholar 

  126. Daenen M, Williams OA, D’haen J, Haenen K, Nesladek M (2006) Phys Status Solidi A 203:3005–3010

    Article  Google Scholar 

  127. Williams OA, Douheret O, Daenen M, Haenen K, Osawa E, Takahashi M (2007) Chem Phys Lett 445:255–258

    Article  Google Scholar 

  128. Feygelson TI, Shenderova O, Hens S, Cunningham G, Hobart KD, Butler JE (2008) 3rd international symposium detonation nanodiamonds: technology, properties and applications, St. Petersburg, Russia

    Google Scholar 

  129. Chien-Min S, Michael S, Emily S, Patent US 7, 294, 340

    Google Scholar 

  130. Lunkin VV Patent RU 2 257 889

    Google Scholar 

  131. Dolmatov VY (2006) Application of detonation nanodiamond. In: Shenderova OA, Gruen DM (eds) Ultra nanocrystalline diamond: synthesis, properties, and applications. William Andrew, Norwich, NY, USA, pp 513–527

    Google Scholar 

  132. Environmental Working Group, www.cosmeticdatabase.com.

  133. Gasparro FP, Mitchnick M, Nash JF (1998) Photochem Photobiol 68:243–256

    Article  Google Scholar 

  134. Cockell CS, Knowland J (1999) Biol Rev Cambridge Philosophical Soc 74:311–345

    Article  Google Scholar 

  135. Nash JF (2006) Dermatol Clin 24:35

    Article  Google Scholar 

  136. Zaitsev AM (2001) vol 348. Springer

    Google Scholar 

  137. Sayes CM, Reed KL, Warheit DB (2007) Toxicol Sci 97:163–180

    Article  Google Scholar 

  138. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) Biochem Biophys Res Commun 332:633–639

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help of V. Kuznetsov and B. Palosz for providing illustrations for this chapter, as well as helpful discussions with Amanda Schrand and G. McGuire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Shenderova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shenderova, O.A., Ciftan Hens, S.A. (2010). Detonation Nanodiamond Particles Processing, Modification and Bioapplications. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics