Skip to main content

Blood Flow in an Out-of-Plane Aorto-left Coronary Sequential Bypass Graft

  • Chapter
  • First Online:
Computational Cardiovascular Mechanics

Abstract

Coronary artery bypass graft (CABG) is a major therapy for ischemic heart disease which if left untreated can progress to failure of the heart. Restenosis, a leading cause of CABG, can be correlated with the geometric configuration and the hemodynamics of the graft. In this chapter we use computational fluid dynamics (CFD) to investigate the hemodynamics in a 3D out-of-plane sequential bypass graft model. Using a finite volume approach, quasi-steady flow simulations are performed at mid-ejection and at mid-diastole. Plots of velocity vectors, wall shear stress (WSS), and spatial WSS gradient (WSSG) distribution are presented in the aorto-left coronary bypass graft domain. Simulation results reveal a more uniform WSS and spatial WSSG distribution in the side-to-side (sequential graft) anastomosis configuration over the end-to-side (multiple graft) anastomosis. Results for the multiple bypass graft model show the peak magnitudes of the spatial WSSG are higher compared to the sequential bypass graft model. These findings suggest that sequential bypass grafting may be preferable over multiple bypass grafting to avoid non-uniformities of WSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flemma RJ, Johnson WD, Lepley D Jr. Triple aorto-coronary vein bypass as treatment for coronary insufficiency. Arch Surg. 1971;103:82–3.

    Article  Google Scholar 

  2. Bartley TD, Bigelow JC, Page US. Aortocoronary bypass grafting with multiple sequential anastomoses to a single vein. Arch Surg. 1972;105:915–7.

    Article  Google Scholar 

  3. Grondin CM, Limet R. Sequential anastomoses in coronary artery grafting: technical aspects and early and late angiographic results. Ann Thorac Surg. 1977;23:1–8.

    Article  Google Scholar 

  4. Minale C, Bourg NP, Bardos P, Messmer BJ. Flow characteristics in single and sequential aorto-coronary bypass grafts. J Cardiovasc Surg. 1984;25:12–5.

    Google Scholar 

  5. O‘Neill MJ Jr, Wolf PD, O‘Neill TK, Montesano RM, Waldhausen JA. A rationale for the use of sequential coronary artery bypass grafts. J Thorac Cardiovasc Surg. 1981;81:686–90.

    Google Scholar 

  6. Kerem M, Sener E, Tasdemir O. Long-term patency of sequential and individual saphenous vein coronary bypass grafts. Eur J Cardiovasc Surg. 2001;19:140–4.

    Article  Google Scholar 

  7. Kieser TM, FitzGibbon M, Keon WJ. Sequential coronary bypass grafts. long-term follow up. J Thorac Cardiovasc Surg. 1986;91:767–72.

    Google Scholar 

  8. Meeter K, Veldkamp R, Tijssen JG, Van Herwerden LL, Bos E. Clinical outcome of single versus sequential grafts in coronary bypass operations at ten years’ follow-up. J Thorac Cardiovasc Surg. 1991;101:1076–81.

    Google Scholar 

  9. Clowes AW. Pathologic intimal hyperplasia as a response to vascular injury and reconstruction. In: Rutherford RB (Ed.) Vascular surgery, 4th edn. Philadelphia: WB Saunders, 1995:285–95.

    Google Scholar 

  10. Imparato AM, Bracco A, Kim GFE, Zeff RZ. Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction. Surgery. 1972;72:1007–17.

    Google Scholar 

  11. Lo Gerfo FW, Soncrant T, Teel T, Dewey CF Jr. Boundary layer separation in models of side-to-end arterial anastomoses. Arch Surg. 1979;114:1369–73.

    Article  Google Scholar 

  12. Clark RE, Apostolou S, Kardos JL. Mismatch of mechanical properties as a cause of arterial prosthesis thrombosis. Surg Forum. 1976;27:208–10.

    Google Scholar 

  13. Kassab GS, Navia JA. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu Rev Biomed Eng. 2006;8:499–535.

    Article  Google Scholar 

  14. Meena S, Ghista DN, Chua LP, Tan YS, Kassab GS. Analysis of blood flow in an out-of-plane CABG model. Am J Physiol Heart Circ Physiol. 2006;291:H283–95.

    Article  Google Scholar 

  15. Hadcock MM, Ubatuba J, Littooy FN, Baker WH. Hemodynamics of sequential grafts. Am J Surg. 1983;146:170–3.

    Article  Google Scholar 

  16. Ochi M, Yamada K, Ishii Y et al. Impact of sequential grafting of the internal thoracic or right gastroepiploic arteries on multiple coronary revascularization. Cardiovasc Surg. 2000;8(5):386–92.

    Article  Google Scholar 

  17. Murray CD. The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proc Natl Acad Sci. 1926;12:207–14.

    Article  Google Scholar 

  18. Qiao A, Liu Y, Li S, Zhao H. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts. J Bio Phys. 2005;31:161–82.

    Article  Google Scholar 

  19. Pietrabissa R, Mantero S, Marotta T, Menicanti L. A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phy. 1996;18(6):477–84.

    Article  Google Scholar 

  20. Nerem RM. Vascular fluid mechanics and the arterial wall, and atherosclerosis. J Biomech Eng. 1992;114:274–82.

    Article  Google Scholar 

  21. Lei M, Kleinstreuer C, Truskey G. Numerical investigation and prediction of atherogenic sites in branching arteries. J Biomech Eng. 1995;11:350–7.

    Article  Google Scholar 

  22. Friedman MH. Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas. ASME J Biomech Eng. 1993;115:595–601.

    Article  Google Scholar 

  23. Steinmann DA, Ethier CR. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J Biomech Eng. 1994;116:294–301.

    Article  Google Scholar 

  24. Zeng DH, Ding ZH, Friedman MH, Ethier CR. Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng. 2003;31:420–9.

    Article  Google Scholar 

  25. Santamarina A, Weydahl E, Siegel JM Jr, Moore JE Jr. Computational analysis of flow in curved tube model of the coronary arteries: effects of time varying curvature. Ann Biomed Eng. 1998;26(6):944–54.

    Article  Google Scholar 

  26. Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng. 2001;29:109–20.

    Article  Google Scholar 

  27. Ballyk PD, Stienmann DA, Ethier CR. A simulation of non-Newtonian blood in an end-to-side anastomosis. Biorheology. 1994;31:565–86.

    Google Scholar 

  28. Meurala H, Valle M, Hekali P, Somer K, Frick MH, Harjola PT. Patency of sequential versus single vein grafts in coronary bypass surgery. Thorac Cardiovasc Surg. 1982;30:147–51.

    Article  Google Scholar 

  29. McNamara JJ, Berke HS, Chung GKT, Dang CR. Blood flow in sequential vein grafts. Circulation. 1979;60:33–8.

    Article  Google Scholar 

  30. Gwozdziewicz M, Nemec P, Simek M, Hajek R, Troubil M. Sequential bypass grafting on beating heart: blood flow characteristics. Ann Thorac Surg. 2006;82:620–3.

    Article  Google Scholar 

  31. Al-Ruzzeh S, George S, Bustami M, Nakamura K, Khan S, Amrani M. The early clinical and angiographic outcome of sequential coronary artery bypass grafting with the off-pump technique. J Thorac Cardiovasc Surg. 2002;123:525–30.

    Article  Google Scholar 

  32. Berthier B, Bouzerar R, Legallais C. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech. 2002;35:1347–56.

    Article  Google Scholar 

  33. Perktold K, Peter R. Numerical 3D-simulation of pulsatile wall shear stress in an arterial T-bifurcation model. J Biomed Eng. 1990;12:2–12.

    Article  Google Scholar 

  34. Stone PH, Coskun AU, Yeghiazarians Y, Al-Ruzzeh S, George S et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behaviour. Curr Opin Cardiol. 2003;18:458–70.

    Article  Google Scholar 

  35. Giannoglou GD, Soulis JV, Farmakis TM, Farmakis DM, Louridas GE. Hemodynamic factors and the important role of local low static pressure in coronary wall thickening. Int J Cardiol. 2002;86:27–40.

    Article  Google Scholar 

  36. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig. 2005;85:9–23.

    Article  Google Scholar 

  37. Glor FP, Ariff B, Hughes AD et al. WImage-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol Meas. 2004;25:1495–509.

    Article  Google Scholar 

  38. Malek AM, Alper SL, Izumo S. Hemodynamic stress and its role in atherosclerosis. J Am Med Assoc. 1999;282:2035–42.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Institute of Health-National Heart, Lung, and Blood Institute Grant HL086400 and HL084529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Sankaranarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sankaranarayanan, M., Ghista, D.N., Chua, L.P., Seng, T.Y., Sundaravadivelu, K., Kassab, G.S. (2010). Blood Flow in an Out-of-Plane Aorto-left Coronary Sequential Bypass Graft. In: Guccione, J., Kassab, G., Ratcliffe, M. (eds) Computational Cardiovascular Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0730-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0730-1_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0729-5

  • Online ISBN: 978-1-4419-0730-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics