Skip to main content

Peach

  • Chapter
  • First Online:
Fruit Breeding

Abstract

The peach is the third most produced temperate tree fruit species behind apple and pear. This diploid species, Prunus persica, is naturally self-pollinating unlike most of the other cultivated Prunus species. Its center of diversity is in China, where it was domesticated. Starting about 3,000 years ago, the peach was moved from China to all temperate and subtropical climates within the Asian continent and then, more than 2,000 years ago, spread to Persia (present day Iran) via the Silk Road and from there throughout Europe. From Europe it was taken by the Spanish and Portuguese explorers to the Americas. It has an extensive history of breeding that has resulted in scion cultivars with adaptability from cold temperate to tropical zones, a ripening season extending for 6–8 months, and a wide range of fruit and tree characteristics. Peach has also been crossed with species in the Amygdalus and Prunophora subgenera to produce interspecific rootstocks tolerant to soil and disease problems to which P. persica has limited or no resistance. It is the best known temperate fruit species from a genetics perspective and as a model plant has a large array of genomics tools that are beginning to have an impact on the development of new cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, A., Georgi G.L., Inigo, M., Sosinski B., Yvergniaux D., Wang Y., Blenda A. and Reighard G. (2002) Peach, the model genome for Rosaceae. Acta Hort. 575, 145–155.

    CAS  Google Scholar 

  • Abbott, A.G., Rajapakse B., Sosinski, B., Lu Z.X., Sossey-Alaoui K., Gannavarapu M., Reighard G.L., Ballard R.E., Baird, W.V., Scorza, R. and Callahan, A. (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort, 465, 41–49.

    CAS  Google Scholar 

  • Abbott A., Arús P. and Scorza R. (2007) Peach. In: Chittaranjan K. (ed.), Genome Mapping and Molecular Breeding in Plants, Fruits and Nuts. Springer Heidelberg, Berlin, pp. 137–156.

    Google Scholar 

  • Albás, E.S., Jiménez, S., Aparicio, J., Betrán, J.A. and Moreno, M.A. (2004) Effect of several peach × almond hybrid rootstocks on fruit quality of peaches. Acta Hort. 658, 321–326.

    Google Scholar 

  • Amador, M.L. (2010) Estudio de las bases bioquímicas y moleculares de la tolerancia a la asfixia radicular. Ph.D. Thesis. Facultad de Ciencias. Universidad de Zaragoza. Spain. Pp. 177 (in English).

    Google Scholar 

  • Amador, M.L., Sancho, S., Rubio-Cabetas, M.J. (2009) Biochemical and molecular aspects involved in waterlogging tolerance in Prunus rootstocks. Acta Hort 814, 715–720.

    CAS  Google Scholar 

  • Amador, M.L., Bielsa, B., Gómez-Aparisi, J., Sancho, S., Jaime S., and Rubio-Cabetas, M.J. (2010) Avances en el estudio de la tolerancia a la asfixia radicular en patrones de melocotonero. Revista de Fruticultura n 9. Especial Melocotonero, pp. 48–55.

    Google Scholar 

  • Anderson, N. (2009). Diversity of low chill peaches (Prunus persica) from Asia, Brazil, Europe, and the USA. M.S. Thesis. Texas A&M University, College Station, TX.

    Google Scholar 

  • Anderson, N., Byrne D.H., Sinclair, J. and Burrell, A.M. (2002) Cooler temperatures during germination improves survival of embryo cultured peach seed. HortScience 37, 402.

    Google Scholar 

  • Aranzana, M.J., Carbo, J. and Arús, P. (2003a) Microsatellite variability in peach [Prunus persica (L.) Batsch], cultivar identification, marker mutation, pedigree inferences and population structure. Theor. Appl. Genet. 106, 1341–1352.

    PubMed  CAS  Google Scholar 

  • Aranzana, M.J., Pineda, A., Cosson, P., Dirlewanger, E., Ascasibar, J., Cipriani, G., Ryder, C.D., Testolin, R., Abbott, A., King, G.J., Iezzoni, A.F. and Arus, P. (2003b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 106, 819–825.

    PubMed  CAS  Google Scholar 

  • Aranzana, M.J., Garcia-Mas, J., Carbo, J. and Arús, P. (2002) Development and variability analysis of microsatellite markers in peach. Plant Breeding 121, 87–92.

    Article  CAS  Google Scholar 

  • Arumuganathan, K. and Earle, E. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218.

    Article  CAS  Google Scholar 

  • Arús, P., Mnejja, M., Esmenjaud, D., Bosselut, N. and Dirlewanger, E. (2004). High marker density around the peach nematode resistance genes. Acta Hort. 658, 567–571.

    Google Scholar 

  • Audergon. J.M., D. Ruiz, A. Bachellez, A. Blanc, M.N. Corre, C. Croset, A.M. Ferreol, P. Lambert, T. Pascal, J.L. Poëssel, V. Signoret, B. Quilot, K. Boudehri, C. Renaud, E. Dirlewanger, L. Dondini, B. Gouble, M. Grotte, M. Bogé, P. Reiling, M. Reich, S. Bureau, C. Deborde, M. Maucourt, A. Moing, S. Monllor, and P. Arús (2009) ISAFRUIT – Study of the genetic basis of Prunus fruit quality in two peach and apricot populations. Acta Hort. 814, 523–527.

    CAS  Google Scholar 

  • Bacon, T.A. and Byrne, D.H. (2005) Percent dry weight of the ovule predicts peach seed viability. HortScience, 40(7), 2211–2212.

    Google Scholar 

  • Badenes, M.L., Martínez-Calvo, J., and Llácer, G. (1998) Analysis of peach germplasm from Spain. Acta Hort. 465, 243–250.

    Google Scholar 

  • Bailey, C.H. and Hough, L.F. (1959) A hypothesis for the inheritance of season of ripening in progenies from certain early ripening peach varieties and selections. Proc. Amer. Soc. Hort. Sci. 73, 125–133.

    Google Scholar 

  • Bailey, J.S. and French, A.P. (1949) The inheritance of certain fruit and foliage characters in the peach. Mass. Ag. Expt. Sta. Bul. 452. Univ. Mass. (1949). 31 p.

    Google Scholar 

  • Bailey, J.S. and French, A.P. (1933) The inheritance of certain characters in the peach. Proc. Amer. Soc. Hort. Sci. 29, 127–130.

    Google Scholar 

  • Baird, W.V., Estager, A.S. and Wells, J.K. (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J. Amer. Soc. Hort. Sci. 119, 1312–1316.

    Google Scholar 

  • Bassi, D. (2006) Breeding for resistance to Plum pox virus in Italy. EPPO/OEPP Bulletin 36, 327–329.

    Google Scholar 

  • Bassi, D. (Ed.) (2003) Growth habits in stone fruit trees. Il Divulgatore, Bologna, Italy.

    Google Scholar 

  • Bassi, D. and Rizzo, M. (2000) Peach breeding for growth habit. Acta Hort. 538, 411–414.

    Google Scholar 

  • Bassi, D., Rizzo, M. and Canton I.L. 1998 Assaying brown rot [(Monilinia laxa Aderh. Et Ruhl (Honey)] susceptibility in peach cultivars and progeny. Acta Hort. 465, 715–718.

    Google Scholar 

  • Battistini, A. and De Paoli, G. (2002) Large scale micropropagation of several peach rootstocks. Acta Hort. 592, 29–33.

    Google Scholar 

  • Beckman, T.G. (1998) Developing Armillaria resistant rootstocks in peach. Acta Hort. 465, 219–224.

    Google Scholar 

  • Beckman, T.G. and Pusey, P.L. (2001) Field testing peach rootstocks for resistance to Armillaria root rot. HortScience 36, 101–103.

    Google Scholar 

  • Beckman, T.G., Okie, W.R., Nyczepir, A.P., Pusey, P.L. and Reilly, C. C. (1998) Relative susceptibility of peach and plum germplasm to Armillaria root rot. HortScience 33, 1062–1065.

    Google Scholar 

  • Beckman, T.G., Reighard, G.L., Okie, W.R., Nyczepir, A.P., Zehr, E.I. and Newall, W.C. (1997) History, current status and future potential of GuardianTM peach rootstock. Acta Hort. 451, 251–258.

    Google Scholar 

  • Beckman, T.G., Rodríguez, J., Sherman, W.B. and Werner, D.J. (2005) Evidence for qualitative suppression of red skin color in peach. HortScience 40, 523–524.

    Google Scholar 

  • Beckman, T.G. and Sherman, W.B. (1996) Non-melting semi-freestone genotype in peach. Fruit Var. J. 50,189–193.

    Google Scholar 

  • Beckman, T.G. and Sherman, W.B. (2003) Probable quantitative inheritance of full red skin color in peach. Hortscience 38, 1184–1185.

    Google Scholar 

  • Begheldo M., Manganaris G.A., Bonghi C. and Tonutti, P. (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biology and Technology, 48, 84–91.

    Article  CAS  Google Scholar 

  • Bellini, E., Surico, G. Mugnai, L. Natarelli, L. and Nencetti, V. (1993) Osservazioni su una progenie di pesco resistente a Taphrina deformans (Berck.) Tul. Italus Hortus 1, 11–13.

    Google Scholar 

  • Bernhard, R. 1949. Le pechèr x amandier. Rev. Hort., Paris 121,97–101.

    Google Scholar 

  • Bernhard, R. and Grasselly, C. (1981) Les pêchers x amandiers. L’Arboriculture Fruitière, 328, 37–42.

    Google Scholar 

  • Bernhard, R. and Renaud, R. (1990) Le point sur les porte-greffes du prunier. L’Arboriculture Fruitière 432, 28–36.

    Google Scholar 

  • Blake, M.A. (1937) Progress in peach breeding. Proc. Amer. Soc Hort. Sci, 35, 49–53.

    Google Scholar 

  • Blake, M.A. (1932) The J.H. Hale as a parent in peach crosses. Proc. Amer. Soc. Hort. Sci. 29, 131–136.

    Google Scholar 

  • Blenda, A.V., Verde, I., Georgi, L.L., Reighard, G.L., Forrest, S.D., Muñoz-Torres, M., Baird, W.V. and Abbott, A. (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genetics and Genomes 3, 341–350.

    Article  Google Scholar 

  • Bliss, F.A., Arulsekar, S., Foolad, M.R., Becerra, V., Gillen, A.M., Warburton, M.L., Dandekar, A.M., Kocsisne, G.M. and Mydin, K.K. (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45, 520–529.

    Article  PubMed  CAS  Google Scholar 

  • Boonprakob, U., Byrne, D.H. and Mueller, D.M.J. (1996) Anatomical differences of axillary bud development in blind nodes and normal nodes in peach. HortScience 31(5), 798–801.

    Google Scholar 

  • Boonprakob, U., Byrne, D.H. and Rouse, R.E. (1992) Response of fruit development period to temperature during specific periods after full bloom in peach. Fruit Var. J. 46(3), 137–140.

    Google Scholar 

  • Boonprakob, U., Byrne, D.H. and Rouse, R.E. (1994) A method for blind node evaluation. Fruit Var. J. 48, 213–215.

    Google Scholar 

  • Boudehri, K., Bendahmane, A., Cardinet, G., Troadec, M.C., Moing, A. and Dirlewanger, E. (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biology 9, 59.

    Article  PubMed  CAS  Google Scholar 

  • Bouhadida, M., Moreno, M.A., Gonzalo, M.J., Alonso, J.M., Gogorcena, Y. (2011) Genetic variability of introduced and local Spanish peach cultivars determined by SSRs markers. Tree Genetics & Genomes 7(2), 257–270.

    Google Scholar 

  • Bouhadida M., Casas, A. M., Moreno, M. A. and Gogorcena, Y. (2007a) Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Hort. 111, 140–145.

    Google Scholar 

  • Bouhadida, M., Martín, J.P., Eremin, G., Pinochet, J., Moreno, M.A., and Gogorcena, Y. (2007b) Chloroplast DNA diversity in Prunus and its implication on phylogenetic relationships. J. Amer. Soc. Hort. Sci. 132, 670–679.

    CAS  Google Scholar 

  • Bouhadida, M., Casas, A.M., Gonzalo M.J., Arús P., Moreno, M.A., Gogorcena, Y. (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120, 237–245.

    Article  CAS  Google Scholar 

  • Brecht, J.A. and Kader, A.A. (1984) Ethylene production by fruit of some slow ripening nectarine genotypes. J. Amer. Soc. Hort. Sci. 109,763–767.

    CAS  Google Scholar 

  • Brooks, S.J., Moore, J.N. and Murphy, J.B. (1993) Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch]. J. Amer. Soc. Hort Sci. 118, 97–100.

    CAS  Google Scholar 

  • Brooks, R.M. and Olmo, H.P. (1997). Register of Fruit & Nut Varieties. 3rd ed. ASHS Press, Alexandria, Virginia, USA.

    Google Scholar 

  • Brovelli, E.A., Brecht, J.K., Sherman, W.B. and Sims, C.A. (1998) Anatomical and physiological responses of melting-flesh and nonmelting-flesh peaches to postharvest chilling. J. Amer. Soc. Hort. Sci. 123, 668–674.

    CAS  Google Scholar 

  • Brovelli, E.A., Brecht, J.K., Sherman, W.B. and Sims, C.A. (1995) Quality profile of fresh market melting and non-melting peach fruit. Proc. Fla. State Hort. Soc. 108, 309–311.

    Google Scholar 

  • Burgos, L., Egea, J. and Dicenta, F. (1991) Effective pollination period in apricot (Prunus armeniaca L.) cultivars. Annals Applied Biology, Cambridge- England, V.119, 533–539.

    Google Scholar 

  • Byrne, D.H. (1986) Mechanism of spring freeze injury avoidance in peach. HortScience 21, 1235–1236.

    Google Scholar 

  • Byrne, D. H. (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81, 68–71.

    Google Scholar 

  • Byrne, D.H. (2003) Founding clones of low chilling fresh market peach germplasm developed in the USA and Brazil. Acta Hort. 606, 17–21.

    Google Scholar 

  • Byrne, D.H. (2005) Trends in stone fruit cultivar development. Hort. Technol.15, 494–500.

    Google Scholar 

  • Byrne, D.H. (2007) Molecular marker use in perennial plant breeding. Acta Hort 751, 163–167.

    Google Scholar 

  • Byrne, D. H. (2010). Environmental challenges of breeding peaches for low chill regions. Acta Hort. 872, 129–138.

    Google Scholar 

  • Byrne. D.H. and Bacon, T.A. (1999) Founding clones of low-chill fresh market peach germplasm. Fruit Var. J. 53, 162–171.

    Google Scholar 

  • Byrne, D.H., Noratto, G., Cisneros Zevallos, L., Porter, W. and Vizzotto, M. (2009) Health benefits of peaches and plums. Acta Hort., 841, 267–274.

    CAS  Google Scholar 

  • Byrne, D.H., Nikolic, A.N. and Burns, E.E. (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J. Amer. Soc. Hort Sci. 116, 1004–1006.

    CAS  Google Scholar 

  • Byrne, D.H. and Raseira, M.C.B. (2006) Inbreeding of the major commercial fresh market peach cultivars grown in Southern Brazil. Acta Hort. 713, 99–101.

    Google Scholar 

  • Byrne, D.H., Sherman, W.B. and Bacon, T.A. (2000) Stone fruit genetic pool and its exploitation for growing under warm winter conditions. In: Erez, A. (Ed.). Temperate Fruit Crops in Warm Climates. Boston, Kluwer Academic Publishers, pp. 157–230.

    Google Scholar 

  • Callahan, A., Scorza, R., Morgens, P., Mante, S., Cordts, J. and Cohen, R. (1991) Breeding for cold hardiness, searching for genes to improve fruit quality in cold-hardy peach germplasm. HortScience 26, 522–526.

    Google Scholar 

  • Cambra, R. (1990). ‘Adafuel’, an almond x peach hybrid rootstock. HortScience 25, 584.

    Google Scholar 

  • Cantín, C.M., Gogorcena, Y. and Moreno, M.A. (2009a) Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric 89, 1909–1917.

    Article  CAS  Google Scholar 

  • Cantín, C.M., Moreno, M.A. and Gogorcena Y (2009b) Evaluation of the antioxidant capacity, phenolic compounds and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57, 4586–4592.

    Article  PubMed  CAS  Google Scholar 

  • Cantín, C.M., Gogorcena, Y. and Moreno M.A. (2010a) Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica 171, 211–226.

    Article  Google Scholar 

  • Cantín C.M., Crisosto, C.H., Ogundiwin, E.A., Gradziel, T., Torrents, J., Moreno, M.A., Gogorcena, Y. (2010b) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Bastch] progeny. Postharvest Biol. Technol. 58, 79–87.

    Google Scholar 

  • Caillavet, H. and Souty, J. (1950). Monographie des principales variétés de pêchers. Societé Bordelaise D´Impremirie. Bordeaux.

    Google Scholar 

  • Cevallos-Casals, B., Byrne, D.H., Okie, W.R. and Cisneros-Zevallos, L. (2005). Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 96, 273–280.

    Article  CAS  Google Scholar 

  • Chaparro, J.X., Werner, D.J., O’Malley, D. and Sederoff, R.R. (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor. Appl. Genet. 87, 805–815.

    Article  CAS  Google Scholar 

  • Chen, W., Wang, L., Zhang, C., Chen, C., and Cao, K. (2007) Genetic diversity analysis of peach (Prunus persica) cultivars introduced from different countries by SSR (in Chinese). J. Fruit Sci. 24(5), 580–584.

    Article  CAS  Google Scholar 

  • Chibiliti G. and Byrne, D. H. (1989) Relative aluminum tolerance of Prunus rootstocks. HortScience 24(4), 657–658.

    Article  CAS  Google Scholar 

  • Citadin, I., Raseira, M.C.B., Herter, F.G. and Silva, J.B. (2001) Heat requirement for blooming and leafing in peach. HortScience 36, 305–307.

    Google Scholar 

  • Citadin, I., Raseira, M.C.B., Quezada, A.C. and Silva, J.B. (2003) Herdabilidade da necessidade de calor para a antese e brotação em pesseguiero. Rev. Bras. Frutic. 25(1), 119–123.

    Article  Google Scholar 

  • Cinelli, F. and Loreti, F. (2004) Evaluation of some plum rootstocks in relation to lime-induced chlorosis by hydroponic culture. Acta Hort. 658, 421–427.

    Google Scholar 

  • Cipriani, G., Lot, G., Huang, W.G, Marrazzo, M.T., Peterlunger, E. and Testolin, R. (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch], isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99, 65–72.

    Article  CAS  Google Scholar 

  • Claverie, M., Bosselut, N., Lecouls, A.C., Voisin, R., Lafargue, B., Poizat, C., Kleinhentz, M., Laigret, F., Dirlewanger, E. and Esmenjaud, D. (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor. Appl. Genet. 108, 765–773.

    Article  PubMed  CAS  Google Scholar 

  • Claverie M., Dirlewanger E., Cosson P., Bosselut N., Lecouls A.C., Voisin R., Kleinhentz M., Lafargue B., Caboche M., Chalhoub B., Esmenjaud D. (2004b) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor. Appl. Genet. 109, 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  • Colaric M, Veberic, R., Stampar, F., Hudina, M. (2005) Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J. Sci. Food Agric. 85, 2611 – 2616.

    Article  CAS  Google Scholar 

  • Connors, C. H. (1922) Peach breeding. A summary of results. Proc. Amer. Soc. Hort. Sci. 19, 108–115.

    Google Scholar 

  • Connors, C. H. (1920) Some notes on the inheritance of unit characters in peach. Proc. Amer. Soc. Hort. Sci. 16, 24–36.

    Google Scholar 

  • Cos, J., Frutos, D., García, R., Rodríguez, J. and Carrillo, A. (2004) In vitro rooting study of the peach-almond hybrid ‘Mayor’. Acta Hort. 658, 623–627.

    Google Scholar 

  • Couto, M. (2006) Efeito da temperatura durante a diferenciação de gemas, floração, crescimento e desenvolvimento de frutos em pessegueiro na região de Pelotas, RS. Dr.Thesis (Doutorado em Agronomia – Fruticultura de Clima Temperado) – Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, pp.122.

    Google Scholar 

  • Couto, M., Raseira, M.C.B., Herter, F.G. and Silva, J.B. (2007) Influence of High temperatures at blooming time on pollen production and fruit set of peach cvs. Maciel and Granada. VIII Symposium of Temperate Zone fruits in the Tropics and Subtropics. Program and Abstracts, Florianópolis, Brazil, Oct. 2007, p.36.

    Google Scholar 

  • Crisosto, C.H. (2006) Peach quality and postharvest technology. Acta Hort. 713, 479–488.

    CAS  Google Scholar 

  • Crisosto, C.H. (2002). How to increase peach consumption? Acta Hort. 592, 601–605.

    Google Scholar 

  • Crisosto, C.H. and Crisosto, G.M. (2005) Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine [Prunus persica (L.) Batsch] cultivars. Postharv Biol. Technol. 38, 239–246.

    CAS  Google Scholar 

  • Crisosto, C.H., Crisosto, G.M., Echevarria, G. and Puy, J. (2006) Segregation of peach and nectarine [Prunus persica (L.) Batsch] cultivars according to their organoleptic characteristics. Postharv. Biol. Technol. 39, 10–18.

    Article  Google Scholar 

  • Crisosto, C.H., Day, K.R., Crisosto, G.M. and Gardiner, D. (2001) Quality attributes of white flesh peaches and nectarines grown under California conditions. J. Amer. Pomol. Soc. 55, 45–51.

    Google Scholar 

  • Crisosto, C.H., Mitchell, F.G. and Ju, Z. (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortSci. 34, 1116–1118.

    Google Scholar 

  • Ctifl (1994) “Peche” – Les variétiés et leur conduite. Centre technique interprofessionnel des fruits et legumes. Paris. pp. 303.

    Google Scholar 

  • Cumming, G.A. (1989) Effect of soil pH and calcium amendments on peach yield, tree growth and longevity. Acta Hort. 254, 179–184.

    Google Scholar 

  • Dabov, S. (1983) Inheritance of peach resistance to powdery mildew. III. Leaf resistance in F1 of J.H. Hale × nectarine Ferganensis 2. Genet. Plant Breed. 16, 146–150.

    Google Scholar 

  • D’Bov, S. (1975) Inheritance of the powdery mildew resistance in peach. II Resistance of some vegetative organs in F1 from crosses between freestone and clingstone varieties with pubescent fruit skin. Genetica i Selektjiva 8 (4), 267–271 (in Bulgarian English abstract).

    Google Scholar 

  • Decoene, C. (1995) La qualitá delle mele, non solo colore. Fruticoltora. 7(8), 29–34.

    Google Scholar 

  • Decroocq, V., Foulongne, M., Lambert, P., Le. Gall, O., Mantin, C., Pascal, T., Schurdi-Levraud, V. and J. Kervella. (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol. Gen. Genomics 272, 680–689.

    Google Scholar 

  • DeJong, T., Johnson, R.S., Doyle, J. F., Weibel, A., Solari, L., Basile, B., Marsal, J., Ramming, D. and Bryla, D. (2004) Growth, yield and physiological behaviour of size-controlling peach rootstocks developed in California. Acta Hort. 658, 449–455.

    Google Scholar 

  • Della Strada, G. and Fideghelli, C. (2003) Le cultivar di drupacee intridotte del 1991 al 2001. L´Informatore Agrario 41, 65–70.

    Google Scholar 

  • Della Strada, G., Fideghelli, C., and Grassi, F. (1996) Peach and nectarine cultivars introduced in the world from 1980 to 1992. Acta Hort. 374, 43–51.

    Google Scholar 

  • De Salvador, F.R., Liverani, A. and Fideghelli, C. (1991) La scelta dei portinnesti delle piante arboree da frutto, Pesco. L’lnformatore Agrario, supplemento, 36, 43–50.

    Google Scholar 

  • De Salvador, F.R., Ondradu, B. and Scalas, B. (2002) Horticultural behaviour of different species and hybrids as rootstocks for peach. Acta Hort. 592, 317–322.

    Google Scholar 

  • Dettori, M.T., Quarta, R. and Verde, I. (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44, 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Dichio, B., Xiloyannis, C., Celano, G., Vicinanza, L., Gómez-Aparisi, J., Esmenjaud, D. and Salesses, G. (2004). Performance of new selections of Prunus rootstocks, resistant to root knot nematodes, in waterlogging conditions. Acta Hort. 658, 403–405.

    Google Scholar 

  • Dirlewanger, E., Cardinet, G., Boudehri, K., Renaud, C., Momllor, S., Illa, E., Howard, W., Arus, P., Croset, C., Poessel, J.L., Maucourt, M., Deborde, C. and Moing A. (2009) Detection of QTLs controlling major fruit quality components in peach within the European Project ISAFRUIT. Acta Hort 814, 533–538.

    CAS  Google Scholar 

  • Dirlewanger, E., Cosson, P., Boudehri, K., Renaud, C., Capdeville, G., Tauzin, Y., Laigret, F. and Moing, A. (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet. Genomes 3, 1–13.

    Google Scholar 

  • Dirlewanger, E. and Arus, P. (2005) Markers in Fruit Tree Breeding, Improvement of Peach. In, Lörz, H. and Wenzel, G. (Eds), Molecular marker systems in plant breeding and crop improvement. Springer Verlag, Berlin, pp. 279–304.

    Google Scholar 

  • Dirlewanger, E., Cosson, P., Howad, W., Capdeville, G., Bosselut, N., Claverie, M., Voisin, C. Pozat, R., Lafargue, B., Baron, O., Laigret, F., Kleinhentz, M., Arús, P. and Esmenjaud, D. (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor. Appl. Genet. 109, 827–838.

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W. and Arús, P. (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc. Nat. Acad. Sci. (USA) 101, 9891–9896.

    Article  CAS  Google Scholar 

  • Dirlewanger, E., Kleinhentz, M., Voisin, R., Claverie, M., Lecouls, A.C., Poëssel, J.L., Faurobert, M., Arús, P., Gómez-Aparisi, J., Di Vito, M., Xiloyannis, C. and Esmenjaud, D. (2004c) Breeding for a new generation of Prunus rootstocks, an example of MAS. Acta Hort. 658, 581–590.

    CAS  Google Scholar 

  • Dirlewanger, E., Cosson P., M. Tavaud P., Aranzana M., Poizat C., Zanettyo A., Arús P. and Laigret F. (2002). Development of microsatellite markers in peach (Prunus persica L.) and their use in genetic diversity analysis in peach and sweet cherry (P. avium L.). Theor. Appl. Genet. 105(1), 127–138.

    Google Scholar 

  • Dirlewanger, E., Moing, A., Rothan, C., Svanella, L., Pronier, V., Guye, A., Plomion, C. and Monet, R. (1999) Mapping QTLs controlling fruit quality in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 98, 18–31.

    Article  CAS  Google Scholar 

  • Dirlewanger, E., Pronier, V., Parvery, C., Rothan, C., Guye, A. and Monet, R. (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor. Appl. Genet. 97, 888–895.

    Article  CAS  Google Scholar 

  • Dirlewanger, E., Pascal, T., Zuger, C. and Kervella, J. (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L) Batsch] x Prunus davidiana hybrids. Theor. Appl. Genet. 93, 909–919.

    Article  CAS  Google Scholar 

  • Dirlewanger, E. and Bodo, C. (1994) Molecular genetic mapping of peach. Euphytica 77, 101–103.

    Article  CAS  Google Scholar 

  • Dosba, F. and Zanetto, A. (2006) The Prunus European cooperative programme for genetic resources. J. Fruit & Orn. Plant Research (12), 77–85.

    Google Scholar 

  • du Plessis, H.J. (1988) Differential virulence of Xanthomonas campestris pv. pruni to peach, plum, and apricot cultivars. Phytopathology 78, 1312–1315.

    Article  Google Scholar 

  • Edin, M. and Garcin, A. (1994) Un nouveau porte-greffe du pêcher Cadaman®-Avimag. L’Arboriculture Fruitière 475, 20–23.

    Google Scholar 

  • Eduardo I., Pacheco I., Chietera G., Bassi D., Pozzi C., Vecchietti A., Rossini L. (2010) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Gene. Genomes doi, 10.1007/s11295-010-0334-6.

    Google Scholar 

  • Edwards, G. R. (1987). Temperatures in relation to peach culture in the tropics. Acta Hort. 199, 61–62.

    Google Scholar 

  • Egea, J., Burgos, L., García, J.E. and Egea, L. (1991) Stigma receptivity and style performance in several apricot cultivars. Annals applied Biology, Cambridge- England, V.66, n.2, p.19–25.

    Google Scholar 

  • Egilla, J.N., and Byrne, D.H. (1989) The search for peach root-stocks tolerant to alkalinity. Fruit Var. J. 43, 7–11.

    Google Scholar 

  • Espada J.L., Romero, J., Socias i Company, R. and Alonso, J.M. (2009) Preview of the second clonal selection from the autochthonous peach population “Amarillos Tardíos de Calanda” (late yellow peaches of Calanda). Acta Hort. 814, 251–254.

    Google Scholar 

  • Esmenjaud, D. (2009) Resistance to root knot nematodes in Prunus, Characterization of sources, marker-assisted selection and cloning strategy for the Ma gene from myrobalan plum. Acta Hort 814, 707–714.

    CAS  Google Scholar 

  • Esmenjaud, D., Minot, J.C., Voisin, R. Pinochet, J. and Salesses, G. (1994) Inter- and intraspecific resistance variability in myrobalan plum, peach and peach-almond rootstocks using 22 root-knot nematode populations. J. Amer. Hort. Sci. 119, 94–100.

    Google Scholar 

  • Esmenjaud, D., Minot, J.C. and Voisin R. (1996) Effect of durable inoculum pressure and high temperature on root galling, nematode numbers and survival of Myrobalan plum genotypes (Prunus cerasifera Ehr.) highly resistant to Meloidogyne spp. Fund. Appl. Nematol. 19:85–90.

    Google Scholar 

  • Etienne, C., Rothan, C., Moing, A., Plomion, C., Bodénès, C., Svanella-Dumas, L., Cosson, P., Pronier, V., Monet, R. and Dirlewanger, E. (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 105, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Fan S., Bielenberg D.G., Zhebentyayeva T.N., Reighard G.L., Okie W.R., Holland D., Abbott A.G. (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist 185, 917–930.

    Article  PubMed  Google Scholar 

  • Faust, M. and Timon, B. (1995) Origin and dissemination of the peach. Hort. Rev. 17, 331–379.

    Google Scholar 

  • Feliciano, A., Feliciano, A.J. and Ogawa, J.M. (1987) Monilinia fructicola resistance in the peach cv Bolinha. Phytopathology 77,776–780.

    Article  Google Scholar 

  • Feliciano, A. and Feliciano, A.J. (1983) Resistance to brown rot in peaches. In International Congress of Plant Pathology, 4, Melbourne, 1983. Abstracts of papers – Melbourne, Australian Plant Society. Resumo 799.

    Google Scholar 

  • Felipe, A. (2009). ‘Felinem’, ‘Garnem’, and Monegro’ almond x peach hybrid rootstocks. HortScience 44, 196–197.

    Google Scholar 

  • Felipe, A., Carrera, M. and Gómez-Aparisi, J. (1997a) ‘Montizo’ and ‘Monpol’, two new plum rootstocks for peaches. Acta Hort. 451, 273–276.

    Google Scholar 

  • Felipe, A.J., Gómez Aparisi, J., Socias i Company, R. and Carrera, M. (1997b). The almond  ×  peach hybrid rootstocks breeding program at Zaragoza (Spain). Acta Hort. 451, 259–262.

    Google Scholar 

  • Fernández, C., Pinochet, J., Esmenjaud, D., Salesses, G. and Felipe, A. (1994) Resistance among new Prunus rootstocks and selections to root-knot nematodes in Spain and France. HortScience 29, 1064–1067.

    Google Scholar 

  • Fideghelli, C., Della Stada, G., Grassi, F. and Morico, G. 1998. The peach industry in the world, present situation and trend. Acta Hort. 465, 29–40.

    Google Scholar 

  • Fideghelli, C., Della Strada, G., Quarta, R. and Rosati, P. (1979) Genetic semi-dwarf peach selections. Proceedings of Eucarpia Fruit Section Symposium, Tree Fruit Breeding. INRA, Angers, France, pp. 3–7.

    Google Scholar 

  • Fogle, H.W. (1974) Evaluating combining ability in peach and nectarine. HortScience 9, 334–335.

    Google Scholar 

  • Foolad, M.R., Arulsekar, S., Becerra, V. and Bliss, F.A. (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor. Appl. Genet. 91, 262–269.

    Article  CAS  Google Scholar 

  • Foulongne, M., Pascal, T., Pfeiffer, F. and Kervella, J. (2003a) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses, consistency across generations and environments. Mol. Breed. 12, 33–50.

    Article  CAS  Google Scholar 

  • Foulongne, M., Pascal, T., Arús, P., and Kervella, J. (2003b) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor. Appl. Genet. 107, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Foulogne, M., Pascal, T., Pfeiffer, F. and Kevella, J. (2002) Introgression of a polygenic resistance to powdery mildew from a wild species Prunus davidiana into peach (Prunus persica (L.) Batsch), a case study of marker assisted selection in fruit tree. Acta Hort. 592, 259–265.

    CAS  Google Scholar 

  • French, A.P. (1951) The peach, inheritance of time of ripening and other economic characters. Mass. Agric.Exp. Sta. Bull., 462.

    Google Scholar 

  • Gentile, A., Monticelli, S. and Damiano, C. (2002) Adventitious shoot regeneration in peach [Prunus persica (L.) Batsch]. Plant Cell Rep. 20, 1011–1016.

    Article  CAS  Google Scholar 

  • Georgi, L.L., Wang, Y., Yvergniaux, D., Ormsbee, T., Inigo, M., Reighard, G.L. and Abbott, A.G. (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 105, 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  • George, A.P., Nissen, R.J. and Sherman, W.B. (1988). Overlapping double and early single cropping in low chill peach in Australia. Fruit Var. J. 42, 91–95.

    Google Scholar 

  • Gillen, A.M. and Bliss, F.A. (2005) Identification and mapping of markers linked to the mi gene for root-knot nematode resistance in peach. J. Amer. Soc. Hort. Sci. 130, 24–33.

    CAS  Google Scholar 

  • Gonzalo M.J., M.A. Moreno, Y. Gogorcena (2011) Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. Journal of Plant Physiology 168, 887–893.

    Google Scholar 

  • Gonzalo, M.J., Dirlewanger, E., Legrait, F., Moreno, M.A. and Gogorcena, Y. (2009) Genetic analysis of iron chlorosis tolerance in a Myrobalan plum x almond peach hybrids. Acta Hort. 814, 799–804.

    CAS  Google Scholar 

  • Gradziel, T.M. (2003) Interspecific hybridizations and subsequent gene introgression within Prunus Subgenus Amygdalus Acta Hort. 622, 249–255.

    CAS  Google Scholar 

  • Gradziel, T.M., Thorpe, R.M., Bostock, R.M. and Wilcox, S. (1997) Breeding for brown rot (Monilinia fructicola) resistance in clingstone peach with emphasis on the role of fruit phenolics. Acta Hort. 465, 161–170.

    Google Scholar 

  • Grasselly, C. (1983) Nouvelles obtentions INRA de pêchers porte-greffes, multiplies par semences. L’Arboriculture Fruitière 357, 50–55.

    Google Scholar 

  • Grasselly, C. (1988) Les porte-greffes du pêcher, des plus anciens aux plus récents. L’Arboriculture fruitière 409, 29–34.

    Google Scholar 

  • Guillaumin, J.J., Pierson, J. and Grasselly, C. (1991). The susceptibility to Armillaria mellea of different Prunus species used as stone fruit rootstocks. Scientia Hort. 46, 43–54.

    Article  Google Scholar 

  • Haji, T., Yaegaki, H. and Yamaguchi, M. (2005) Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Scientia Hort. 105, 241–248.

    Article  Google Scholar 

  • Hammerschlag, F.A., Bauchan, G. and Scorza, R. (1985) Regeneration of peach plants from callus derived from immature embryos. Theor. Appl. Genet. 70, 248–251.

    Article  Google Scholar 

  • Hammerschlag, F.A. (1988) Selection of peach cells for insensitivity to culture filtrates of Xanthomonas campestris pv. pruni and regeneration of resistant plants. Theor. Appl. Genet. 76, 865–869.

    Article  Google Scholar 

  • Hansche, P.E. (1990) Heritability of spring bloom and fall leaf abscission dates in Prunus persica. HortScience, 25, 1639–1641.

    Google Scholar 

  • Hansche, P.E. (1988) Two genes induce brachytic dwarfism in peach. HortScience. 23, 604–606.

    Google Scholar 

  • Hansche, P.E. (1986) Heritability of fruit quality traits in peach and nectarine breeding stocks dwarfed by dw gene. HortScience 21, 1193–1195.

    Google Scholar 

  • Hansche, P.E., Hesse, C.O. and Beres, V. (1972) Estimate of genetic and environmental effects on several traits in peach. J. Amer. Soc. r Hort. Sci. 97, 9–12.

    Google Scholar 

  • Hayama, H., Shimada T., Fujii H., Ito A. and Kashimura Y. (2006) Ethylene-regulation of fruit softening-related genes in peach. J. Exp. Bot. 57(15), 4071–7.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, H.P. (1917). The peaches of New York. NY Agr Exp Sta. NY, EUA.

    Google Scholar 

  • Hesse, C.O. (1975). Peaches. In: J. Janick and J.N. Moore (Eds.), Advances in fruit breeding, Purdue University Press, W. Lafayette, Indiana, pp. 285–335.

    Google Scholar 

  • Hesse, C.O. (1971) Monoploid peaches, Prunus persica L. Batsch, description and meiotic analysis. J. Amer. Soc. Hort. Sci. 96, 326–330.

    Google Scholar 

  • Horn, R., Lecouls, A.C., Callahan, A., Dandekar, A.M., Garay, L., McCord, P., Howad, W., Chan, H., Verde, I., Main, D., Jung, S., Georgi, L.L., Forrest, S., Mook, J., Zhebentyayeva, T.N., Yu, Y., Kim, H.R, Jesudurai, C., Sosinski, B., Arús, P., Baird, W.V., Parfitt, D., Reighard, G., Scorza, R., Tomkins, J., Wing, R. and Abbott, A.G. (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor. Appl. Genet. 110, 1419–1428.

    Article  PubMed  Google Scholar 

  • Howard, B.H. (1987) Propagation. In: R.C. Rom, and R.F. Carlson (Eds.), Rootstocks for Fruit Crops. John Wiley & Sons, New York, pp. 29–77.

    Google Scholar 

  • Howad, W., Yamamoto, T., Dirlewanger, E., Testolin, R., Cosson, P., Cipriani, G., Monforte, A.J., Georgi, L., Abbott, A.G. and Arús, P. (2005) Mapping with a few plants, using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171, 1305–1309.

    Article  PubMed  CAS  Google Scholar 

  • Hu, D. and R. Scorza (2009) Analysis of the ‘A72’ peach tree growth habit and its inheritance in progeny obtained from crosses of ‘A72’ with columnar peach trees. J. Amer. Soc. Hort. Sci. 134, 236–243.

    Google Scholar 

  • Hu, D., Zhang, Z. Zhang, D. Zhang, Q. and Li, J. (2005) Genetic relationships of ornamental peach determined using AFLP markers. HortScience 40, 1782–1786.

    CAS  Google Scholar 

  • Hu, D., Zhang, Z., Zhang, Q., Zhang, D. and Li, J. (2006) Ornamental peach and its genetic ­relationship revealed by inter-simple sequence repeat (ISSR) fingerprints. Acta Hort. 713, 113–120.

    CAS  Google Scholar 

  • Iezzoni, A., Peace, C., Bassil, N., Fazio, G., Luby, J., Main, D., Weebadde, C., Yue, C., van de Weg, E., Bink, M., Brown, S., Byrne, D., Clark, J., Crisosto, C., Davis, T., Evans, K., Finn, C., Gallardo, K. Gasic, K., Gradziel, T., Hancock, J., Jussaume, R., McCracken, V., Oraguzie, N., Reighard, G., Stone, A., Taylor, M., Wang, D. and Xu, K. (2009) RosBREED, Enabling marker-assisted breeding in Rosaceae. Abstract. ASHS meeting. Palm Desert, CA. August, 2009.

    Google Scholar 

  • Indreias, A., Dutu, I. and Stefan, I. (2004) Peach rootstocks created and used in Romania. Acta Hort. 658, 505–508.

    Google Scholar 

  • Infante R., Martínez-Gómez P. and Predieri S. (2008) Quality oriented fruit breeding, Peach [Prunus persica (L.) Batsch]. J. Food Agric. Environ. (JFAE) 6, 342–356.

    Google Scholar 

  • Jacob, H. (1992) Prunus pumila L., eine geeignete schwachwachsende Pfirsichuntererlage. Erwerbsobstbau 34, 144–146.

    Google Scholar 

  • Jáuregui, B., de Vicente, M.C., Messeguer, R., Felipe, A., Bonnet, A., Salesses, G. and Arús, P. (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor. Appl. Genet. 102, 1169–1176.

    Article  Google Scholar 

  • Jiang, W., Qu, D., Mu, D. and Wang, L. (2004) Protected cultivation of horticulturasl crops of China. Hort. Rev. 30, 115–162.

    Google Scholar 

  • Jiménez, S., Pinochet, J., Abadía, A., Moreno, M.A. and Gogorcena, Y. (2008) Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience 43(2), 304–309.

    Google Scholar 

  • Jiménez S., Pinochet, J., Romero, J., Gogorcena, Y., Moreno, M.A., and Espada J.L. (2011) Performance of peach and plum based rootstocks of different vigour on a late peach cultivar in replant and calcareous conditions. Sci. Hortic. 129, 58–63.

    Google Scholar 

  • Joobeur, T., Viruel, M.A., de Vicente, M.C., Jáuregui, B., Ballester, J., Dettori, M.T., Verde, I., Truco, M.J., Messeguer, R., Batlle, I., Quarta, R., Dirlewanger, E. and Arús, P. (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor. Appl. Genet. 97, 1034–1041.

    Article  CAS  Google Scholar 

  • Kader, A.A. (2002) Postharvest biology and technology, an overview. In: A.A. Kader (Ed.), Postharvest technology of horticultural commodities. University of California Press, Davis, pp. 39–47.

    Google Scholar 

  • Kester, D.E. and Assay, R.N. (1986) ‘Hansen 2168’ and ‘Hansen 536’, two Prunus rootstock clones. HortScience 21, 331–332.

    Google Scholar 

  • Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T. and Rupasinghe, V. (2007) Advances in fruit breeding in eastern Canada – Role of phytochemicals in designing specialty fruits. Acta Hort 814, 205–208.

    Google Scholar 

  • Knight, R.L. (1969) Abstract bibliography of fruit breeding and genetics. Easter Press, London.

    Google Scholar 

  • Kozai, N., Beppu, K., Mochioka, R., Boonprakob, U., Subhadrabandhu, S., Kataoka, I. (2004). Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’ peach trees. J. Hort. Sci. Biotech. 79(4), 533–537.

    Google Scholar 

  • Kozai, N., Beppu, K., Kataoka, I. (2002) Adverse effects of temperature on the development of reproductive organs in ´Hakuto` peach trees. In: Reports of the First International Workshop on Production Technologies for low chill temperate Fruits, Chiang-Mai, Thailand, pp. 212–220.

    Google Scholar 

  • Kozlowski, T.T. (1984). Responses of woody plants to flooding. In: T.T. Kozlowski (Ed.), Flooding and Plant Growth. Academic Press, New York. pp. 123–164.

    Google Scholar 

  • Lalli, D.A., Decroocq, V., Blenda, A.V., Schurdi-Levraud, V., Garay, L., Le Gall, O., Damsteegt, V., Reighard, G.L. and Abbott, A.G. (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus, a resistance map for Prunus. Theor. Appl. Genet. 111, 1504–1513.

    Article  PubMed  CAS  Google Scholar 

  • Lammerts, W. E. (1945) The breeding of ornamental edible peaches for mild climates. I. Inheritance of tree and flower characteristics. Am. J. Bot. 32, 53–61.

    Google Scholar 

  • Layne, R.E.C. (1987) Peach rootstocks. In: R.C. Rom and R.F. Carlson (Eds.), Rootstocks for Fruit Crops. John Wiley & Sons, New York, pp. 185–216.

    Google Scholar 

  • Layne, R.E.C. (1984) Breeding peaches in North America for cold hardiness and perennial canker (Leucostoma spp.). Review and outlook. Fruit Var. J. 38, 130–136.

    Google Scholar 

  • Layne, R.E.C. (1982) Cold hardiness of peaches and nectarines following a test winter. Fruit Var. J. 36, 90–98.

    Google Scholar 

  • Lazzari, B., Caprera, A., Vecchietti, A., Merelli, I., Barale, F., Milanesi, L., Stella, A. and Pozzi, C. (2008) Version VI of the ESTree db, an improved tool for peach transcriptome analysis. BMC Bioinformatics 9, S9.

    Article  PubMed  CAS  Google Scholar 

  • Lazzari, B., Caprera, A., Vecchietti, A., Stella, A., Milanesi, L. and Pozzi, C. (2005) ESTree db, a tool for peach functional genomics. BMC Bioinformatics 6 Suppl 4, S16.

    Google Scholar 

  • Lea, M., Ibeh, C., desBordes, C., Vizzotto, M., Cisneros-Zevallos, L., Byrne, D.H., Okie, W.R. and Moyer, M.P. (2008) Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds. Anticancer Res. 28, 2067–2076.

    Google Scholar 

  • Lecouls, A.C., Bergougnoux, V., Rubio-Cabetas, M.J., Bosselut, N., Voisin, R., Poessel, J.L., Faurobert, M., Bonnet, A., Salesses, G., Dirlewanger, E. and Esmenjaud, D. (2004) Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol. Breed. 13, 113–124.

    Article  CAS  Google Scholar 

  • Lecouls, A.C., Rubio-Cabetas, M.J., Minot, J.C., Voisin, R., Bonnet, A., Salesses, G., Dirlewanger, E. and Esmenjaud, D. (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor. Appl. Genet. 99, 328–335.

    Article  Google Scholar 

  • Lecouls A.C., Salesses G., Minot J.C., Voisin R., Bonnet A. and Esmenjaud D. (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor. Appl. Genet. 85:1325–1334.

    Article  Google Scholar 

  • Lee, M.H. and Bostock, R.M. (2007) Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp., A role for cellular redox? Phytopath. 97, 269–277.

    Article  CAS  Google Scholar 

  • Lesley, J. (1957). A genetic study of inbreeding and crossing inbred lines in peaches. Proc. Amer. Soc. Hort. Sci. 45, 243–250.

    Google Scholar 

  • Lesley, J. W. (1939) A genetic study of saucer fruit shape and other characteristics in the peach. Proc. Amer. Soc. Hort. Sci. 38, 218–222.

    Google Scholar 

  • Liu, X., Reighard, G.L., Swire-Clark, G.A. and Baird, W.V. (2007) Peach rootstock identification by DNA-fingerprinting with microsatellite (SSR) markers. J. Amer. Pomol. Soc. 61, 162–166.

    Google Scholar 

  • Liverani, A., Giovannini, D. and Brandi, F. (2004). Development of new peach cultivars with columnar and upright growth habit. Acta Hort. 663, 381–386.

    Google Scholar 

  • Liverani, A., Giovannini, D. and Brandi, F. (2002) Increasing fruit quality of peaches and nectarines, the main goals of ASF-FO (Italy). Acta Hort. 592, 507–514.

    Google Scholar 

  • Liverani, A. and Giovannini, D. (2000) The Peach Breeding Program at the Istituto sperimentale per la frutticoltura di Forli´ (Italy). Summaries. Prunus Breeders Meeting, Empresa Brasileira de Pesquisa Agropecuária, Clima Temperado. Pelotas (RS)Brazil. 29 Nov.–2 Dec. 2000, pp. 19–23.

    Google Scholar 

  • Llácer G. (2009) Fruit breeding in Spain. Acta Hort 814, 43–56.

    Google Scholar 

  • Llácer G., Alonso, J.M., Rubio-Cabetas, M.J., Batlle, I., Iglesias, I., Vargas, F.J., García-Brunton, J. and Badenes, M.L. (2009) Peach industry in Spain. J. Amer. Pomol. Soc. 63(3), 128–133.

    Google Scholar 

  • López, G., Johnson, R. S. and Dejong, T. M. (2007) High spring temperatures decrease peach fruit size. California Agriculture Vol.61(1), 31–34.

    Article  Google Scholar 

  • Loreti, F. and Massai, R. (1994) Sirio, Nuovo portinnesto ibrido pesco x mandorlo. L’Informatore Agrario 28, 47–49.

    Google Scholar 

  • Loreti, F. and Massai, R. (2006) ‘Castore’ and Polluce’, Two new hybrid rootstocks for peach. Acta Hort. 713, 275–278.

    Google Scholar 

  • Lownsberry, B.F. and Thomson, I.J. (1959) Progress in nematology related to horticulture. Proc. Amer. Soc. Hort. Sci. 74, 730–746.

    Google Scholar 

  • Lu, M., Song, C., Huang, C. and Ou, S. (2008) Changes in flesh firmness and ethylene production of different peach types during fruit ripening. Acta Hort. 768, 153–159.

    CAS  Google Scholar 

  • Lu, Z.X, Reighard, G.L., Nyczepir, A.P., Beckman, T.G. and Ramming, D.W. (2000) Inheritance of resistance to root-knot nematodes (Meloidogyne sp.) in Prunus rootstocks. HortScience 35, 1344–1346.

    Google Scholar 

  • Lu, Z.X., Sosinski, B., Reighard, G.L., Baird, W.V. and Abbott, A.G. (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41, 199–207.

    Article  CAS  Google Scholar 

  • Luby, J.J. and Shaw, D.V. (2001) Does marker-assisted selection make dollars and sense in a fruit-breeding program? HortScience 35, 872–879.

    Google Scholar 

  • Luchsinger, L., Ortin, P., Reginato, G. and Infante, R. (2002) Influence of canopy fruit position on the maturity and quality of Angelus peaches. Acta Hort. 592, 515–521.

    Google Scholar 

  • Ma, R., Byrne, D.H., Yu, M., Du, P., and Shen, Z. (2006) Inbreeding and coancestry of the major commercial fresh market peach cultivars in China. Acta Hort. 713, 145–148.

    Google Scholar 

  • Manaresi, A. and Draghetti, A. (1915) Influenza del germoglio ascellare sullo sviluppo e sulla composizione del frutto del pesco. Bollettino Associazione Orticola Professionale Italiana, 1, 1–4 (in Italian).

    Google Scholar 

  • Mante, S., Scorza, R. and Cordts, J.M. (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica, and Prunus cerasus. Plant Cell, Tiss. Organ Cult. 19, 1–11.

    Article  CAS  Google Scholar 

  • Marini, R.P. and Sowers, D.L. (1994) Peach fruit weight is influenced by crop density and fruiting shoot length but not position on the shoot. J. Amer. Soc. Hort. Sci. 119, 180–184.

    Google Scholar 

  • Marchese, A., K.R. Tobutt, and T. Caruso, 2005. Molecular characterisation of Sicilian Prunus persica cultivars using microsatellites. J. Hort. Sci. Biotechnol. 80:121–129.

    CAS  Google Scholar 

  • Martínez-Gómez, P. and Gradziel T.M. (2002). New approaches to almond breeding at the University of California – Davis program. Acta Hort. 591, 253–256.

    Google Scholar 

  • Martínez-Gómez, P., Rubio, M., Dicenta, F. and Gradziel, T.M. (2004) Resistance to plum pox virus (Dideron isolate RB3.30) in a group of California almonds and transfer of resistance to peach. J. Amer. Soc. Hort. Sci 129, 544–548.

    Google Scholar 

  • Martins, O.M. (1996) Evaluation of virulence of strains of Xanthomonas campestris pv. pruni on peach and plum cultivars. Fruit Var. J. 50, 221–225.

    Google Scholar 

  • Marull, J., Pinochet, J., Felipe, A., and Cenis, J.L. (1994) Resistance verification in Prunus selections to a mixture of thirteen Meloidogyne isolates and resistance mechanisms of a peach-almond hybrid to M. javanica. Fundam. Appl. Nematol. 17, 85–92.

    Google Scholar 

  • Massonie, G., Maison, P., Monet R. and Grasselly, C. (1982) Resistance to the green peach aphid Myzus persicae Sulzer (Homoptera, Aphididae) in Prunus persica (L.) Batsch and other Prunus species (in French). Agronomie 2, 63–69.

    Article  Google Scholar 

  • Mathais, C., Mayer, N. A., Mattiuz, B., and Pereira, F. M. (2008) Efeito de porta-enxertos e espaçamentos entre plantas na qualidade de pêssegos ‘Aurora 1’. Rev. Bras. Frutic. Jaboticabal – SP 30, 165–170.

    Google Scholar 

  • McFadden-Smith, W., Miles, N. and Potter, J. (1998) Greenhouse evolution of Prunus rootstocks for resistance or tolerance to the root lesion nematode (Pratylenchus penetrans). Acta Hort 465, 723–729.

    Google Scholar 

  • Meader. E.M. and Blake, M.A. (1940) Some plant characteristics of second generation of P. persica x P. kansuensis crosses. Proc. Amer. Soc. Hort. Sci. 37, 223–231.

    Google Scholar 

  • Mehlenbacher, S.A. and Scorza. R. (1986) Inheritance of growth habit in progenies of ‘Compact Redhaven’ trees. HortScience. 21, 124–126.

    Google Scholar 

  • Meligaard, M., Carr, B.T. and Civille, G.V. (1991) Sensory evaluation techniques. Ed. CRC Press Inc. Florida, EUA. 7–18.

    Google Scholar 

  • Mignani, I., Ortugno, C. and Bassi, D. (2006) Biochemicalparameters for the evaluation of different peach flesh types. Acta Hort. 713, 441–448.

    CAS  Google Scholar 

  • Mingliang, Y., Ruijuan, M., Zhijun, S. and Zhen, Z. (2007) Molecular markers linked to specific characteristics of Prunus persica (L.) Batsch. Acta Hort. 763, 147–154.

    Google Scholar 

  • Monet, R. (1995) Il miglioramento genetico del pesco. In: Bellini, E. (Ed.) State of the art and perspectives of world genetic improvement of fruit tree species. ERSO, Faenza (Italy), pp. 13–27 (in Italian).

    Google Scholar 

  • Monet, R. (1989) Peach genetics, past, present and future. Acta Hort. 254, 49–57.

    Google Scholar 

  • Monet, R. (1985) Heredity of the resistance to leaf curl (Taphrina deformans) and green aphid (Myzus persicae) in the peach. Acta Hort. 173, 21–24.

    Google Scholar 

  • Monet, R. (1979) Genetic transformation of the ‘fruit sweetness’ character-incidence on selection for quality (in French). Eucarpia Fruit Section Symposium, Tree Fruit Breeding, Angers, France. pp. 273–276.

    Google Scholar 

  • Monet, R. (1967) A contribution to the genetics of peaches (in French). Ann. Amelior. Plant 17, 5–11.

    Google Scholar 

  • Monet, R. and Bassi, D. (2008) Classical genetics and breeding. In: D. R. Layne and D. Bassi (Eds.), The Peach. Botany, Production and Uses. CAB International, Wallingford, UK, pp. 61–84.

    Google Scholar 

  • Monet, R., Guye, A. and Massonie, G. (1998). Breeding for resistance to green aphid Myzus persica Sulzer in the peach. Acta Hort. 465, 171–175.

    Google Scholar 

  • Monet, R., Guye, A., Roy, M. and Dachary, N. (1996) Peach Mendelian genetics, a short review and new results. Agronomie 16, 321–329.

    Article  Google Scholar 

  • Monet, R. and Massonié, G. (1994) Déterminisme génétique de la résistance au puceron vert (Myzus persicae) chez le pêcher. Résultats complémentaires. Agronomie 2, 177–182.

    Google Scholar 

  • Moreno, M.A. (2004) Breeding and selection of Prunus rootstocks at the Estación Experimental de Aula Dei, Zaragoza, Spain. Acta Hort. 658, 519–528.

    Google Scholar 

  • Moreno, M.A., Tabuenca, M.C. and Cambra, R. (1995) ‘Adesoto 101’, a plum rootstock for peaches and other stone fruits. HortScience 30, 1314–1315.

    Google Scholar 

  • Moreno, M.A., Tabuenca, M.C. and Cambra, R. (1994) Performance of ‘Adafuel’ and ‘Adarcias’ as peach rootstocks. HortScience 29, 1271–1273.

    Google Scholar 

  • Moreno, M.A., Moing, A., Lansac, M., Gaudillère, J.P. and Salesses, G. (1993) Peach/Myrobalan plum graft incompatibility in the nursery. J. Hort. Sci. 68, 705–714.

    Google Scholar 

  • Morettini, A.E., Baldini, E., Scaramuzzi, F., Bargioni, G. and Pisani, P.L. (1962) Monografia delle principal, cultivar di pesco. Firenzi, Italy.

    Google Scholar 

  • Mowry, J.B. (1964) Inheritance of cold hardiness of dormant peach flower buds. Proc. Amer. Soc. Hort. Sci. 85,128–133.

    Google Scholar 

  • Mowrey, B.D., Werner, D.J. and Byrne, D.H. (1990) Inheritance of isocitrate dehydrogenase, malate dehydrogenase, and shikimate dehydrogenase in peach and peach x almond hybrids. J. Amer. Soc. Hort. Sci. 115, 312–319.

    CAS  Google Scholar 

  • Mowrey, B.D. and Sherman, W.B. (1986) Flower bud set and relationship to vigor in 18 month-old peach seedlings. Proc. Fla. State Hort. Soc. 99, 209–210.

    Google Scholar 

  • Myeki, J. and Sazabó, S. (1989) Effect of frost damage on peach varieties in Hungary. Acta Hort. 254, 255–256.

    Google Scholar 

  • Nicotra, A. and Moser, L. (1997) Two new plum rootstocks for peach and nectarines, Tetra and Penta. Acta Hort. 451, 269–271.

    Google Scholar 

  • Nicotra, A., Conte, L., Moser, L. and Fantechi, P. (2002) New types of high quality peaches (Prunus persica var, platicarpa) and Ghiaccio peach series with long on tree fruit life. Acta Hort. 592, 131–136.

    Google Scholar 

  • Noratto, G, Porter, W., Byrne, D.H. and Cisneros-Zevallos, L. (2010) Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem 57, 5219–5226.

    Article  CAS  Google Scholar 

  • Nyczepir, A.P., Beckman, T.G. and Reighard, G.L. (2006) Field evaluation of ‘Guardian’ TM peach rootstock to different root-knot nematode species. Acta Hort. 713, 303–309.

    Google Scholar 

  • Ogundiwin, E.A., Martí, C., Forment, J., Pons, C., Granell, A., Gradziel, T. M., Peace, C. P. and Crisosto, C. H. (2008a) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol. Biol. 68(4), 379–397.

    Article  PubMed  CAS  Google Scholar 

  • Ogundiwin, E.A., Peace, C.P., Gradziel, T.M., Parfitt, D.E., Bliss, F.A. and Crisosto, C.H. (2009) A fruit quality gene map of Prunus. BMC Genomics 10,587 doi 10.1186/1471-2164-10-587.

    Article  PubMed  CAS  Google Scholar 

  • Okie, W.R. (1998). Handbook of peach and nectarine varieties, performance in the Southeastern United States and Index of names. USDA/ARS, Agriculture handbook 714, pp. 808.

    Google Scholar 

  • Okie, W.R. (1987) Plum rootstocks. In: R.C. Rom and R.F. Carlson (Eds.), Rootstocks for Fruit Crops. John Wiley & Sons, New York, pp. 321–360.

    Google Scholar 

  • Okie, W.R. (1988) USDA peach and nectarine breeding at Byron, Georgia. In: N.F. Childers and W.B. Sherman (Eds.), The Peach. Horticultural Publications, Gainesville, Florida, pp. 51–56.

    Google Scholar 

  • Okie, W.R. (1984) Rapid multiplication of peach seedlings by herbaceous stem cuttings. HortScience 19, 249–251.

    CAS  Google Scholar 

  • Okie, W.R. and Werner, D.J. (1996). Genetic influence of flower bud density in peach and nectarine exceeds that of environment. HortScience 31, 1010–1012.

    Google Scholar 

  • Okie, W.R., Bacon, T. and Bassi, D. (2008). Fresh market cultivar development. In: D.R. Layne and D. Bassi (Eds.), The peach – Botany, Production and Uses. CAB International, 139–174.

    Chapter  Google Scholar 

  • Okie, W.R., Reighard, G.L., Beckman, T.G., Nyczepir, A.P., Reilly, C.C., Zehr, E.I. and Newall, W.C. Jr, Cain, D.W. (1994) Field-screening Prunus for longevity in the southeastern United States. HortScience 29, 673–677.

    Google Scholar 

  • Pascal, T., Pfeiffer, F. and Kervella, J. (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45, 150–152.

    Google Scholar 

  • Pascal, T.F. Pfeiffer, J. Kervella, J.P. Lacroze and M.H. Sauge (2002) Inheritance of green peach aphid resistance in the peach cultivar Rubira. Plant Breeding 121, 459–461.

    Article  Google Scholar 

  • Pascal, T., Kervella, J., Pfeiffer, F.G., Sauge, M.H. and Esmenjaud, D. (1997) Evaluation of the interspecific progeny Prunus persica cv. Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hort. 465, 185–191.

    Google Scholar 

  • Peace, C.P., Crisosto, C.H., Garner, D.T., Dandekar, A.M., Gradziel, T. and Bliss, F.A. (2006) Genetic control of internal breakdown in peach. Acta Hort. 713, 489–496.

    CAS  Google Scholar 

  • Peace, C.P., Crisosto, C.H. and Gradziel, T.M. (2005) Endopolygalacturonase, a candidate gene for freestone and melting flesh in peach. Mol. Breed. 16, 21–31.

    Article  CAS  Google Scholar 

  • Peace, C.P., Callahan, A., Ogundiwin, E.A., Potter, D., Gradziel, T.M., Bliss, F.A. and Crisosto, C.H. (2007) Endopolygalacturaonase genotypic variation in Prunus. Acta Hort. 738, 639–646.

    Google Scholar 

  • Pérez, S. (1993) Bud distribution and yield potential in peach. Fruit Var. J. 47, 18–25.

    Google Scholar 

  • Pérez, S. (1989) Characterization of Mexican peach population from tropical and subtropical regions. Acta Hort. 254, 139–144.

    Google Scholar 

  • Pérez, S. (1997) Breeding peaches for powdery mildew (Sphaeroteca pannosa) resistance in the subtropical regions of central Mexico. Acta Hort. 441, 87–92.

    Google Scholar 

  • Pérez, S. and Moore J.N. (1985) Prezygotic endogenous barriers to interspecific hybridization in Prunus. J. Amer. Soc. Hort. Sci. 110, 267–73.

    Google Scholar 

  • Pérez, S., Montez, S. and Mejía, C. (1993). Analysis of peach germplasm in Mexico. J. Am. Soc. Hort. Sci. 118, 145, 519–524.

    Google Scholar 

  • Pérez-Clemente, R.M., Pérez-Sanjuán, A., García-Férriz, L., Beltrán, J.P. and Cañas, L.A. (2005) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol. Breed. 14, 419–427.

    Article  CAS  Google Scholar 

  • Pérez, S. (1990) Relationship between parental blossom season and speed of seed germination in peach. HortScience 25, 958–960.

    Google Scholar 

  • Pina A. and Errea P. (2005) A review of new advances in mechanism of graft compatibility–incompatibility. Scientia Hort. 106 (1): 1–11.

    Article  Google Scholar 

  • Pinochet, J., Calvet, C., Hernández-Dorrego, A., Bonet, A., Felipe, A. and Moreno, M.A. (1999) Resistance of peach and plum rootstocks from Spain, France, and Italy to rootknot nematode Meloidogyne javanica. HortScience 34, 1259–1262.

    Google Scholar 

  • Pinochet, J. (2009) ‘Greenpac’ a new peach hybrid rootstock adapted to Mediterranean conditions. HortScience 44, 1456–1457.

    Google Scholar 

  • Pinochet, J., Cunill, M., Felipe, A., Eremin, G., Eremin, V., Penyalver, R., López, M.M., Jiménez, S., Gogorcena, Y. and Moreno, M.A. (2005) Performance of new Prunus rootstocks for replant situations to biotic and abiotic stress in Spain. VI International Symposium on Peach, ISHS. Santiago de Chile. January 9–13. Abstracts book (O 5).

    Google Scholar 

  • Pinochet J., Cunill, M., Torrents, J., Eremin V., Eremin, G., Nicotra, A., Jiménez, S., Gogorcena, Y. and Moreno, M.A. (2009) Response of low and medium vigour rootstocks for peach to biotic and abiotic stresses. Acta Hort. (in press).

    Google Scholar 

  • Pinochet, J., Fernández, C., Calvet, C., Hernández-Dorrego, A. and Felipe, A. (2000) Selection against Pratylenchus vulnus populations attacking Prunus rootstocks. HortScience 35, 1333–1337.

    Google Scholar 

  • Pinochet, J., Fernandez, C., Cunill, M., Torrents, J., Felipe, A., López, M.M., Lastra, B. and Penyalver, R. (2002) Response of new interspecific hybrids for peach to root-knot and lesion nematodes, and crown gall. Acta Hort. 592, 707–716.

    Google Scholar 

  • Pinto, A.C.Q., Rogers, S.M.D. and Byrne, D.H. (1994) Growth of immature peach embryos in response to media, method of ovule support and ovule manipulation. HortScience 29, 1081.

    Google Scholar 

  • Pisani, P.L. and Roselli, G. (1983) Interspecific hybridazation of Prunus persica × P. davidiana to obtain new peach rootstocks. Genet. Agr. 37, 197–717.

    Google Scholar 

  • Pooler, M.R. and Scorza, R. (1995) Regeneration of peach [Prunus persica (L.) Batsch] rootstock cultivars from cotyledons of mature stored seed. HortSci. 30, 355–356.

    Google Scholar 

  • Pozzi, C., Vecchietti, A., Lazzari, B., Ortugno, C., Barale, F., De Bellis, G., Consolandi, C., Severgnini, A., Salamini, F. (2007) The ongoing peach genomics and functional genomics effort in Italy. Eucarpia Abstract Book, XII Fruit section Symposium, Spain.

    Google Scholar 

  • Quamme, H.A. and Sushnoff, C. (1983) Resistance to environment stress. In: J.N. Moore & J. Janick (Eds.), Methods in fruit breeding. Purdue University Press, pp.185–335.

    Google Scholar 

  • Quarta, R., Dettori, M. T., Sartori, A. and Verde, I. (2000) Genetic linkage map and QTL analysis in peach. Acta Hort. 521, 233–241.

    CAS  Google Scholar 

  • Quarta, R., Dettori, M.T., Verde, I., Gentile, A. and Broda, Z. (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hort. 365, 51–60.

    Google Scholar 

  • Quilot, B., Wu, B.H., Kervella, J., Génard, M., Foulongne, M. and Moreau, K. (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor. Appl. Genet. 109, 884–897.

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse, S., Belthoff, L.E., He, G., Estager, A.E., Scorza, R., Verde, I., Ballard, R.E., Baird, W.V., Callahan, A., Monet, R. and Abbott, A.G. (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor. Appl. Genet. 90, 503–510.

    Article  CAS  Google Scholar 

  • Ramming, D. W. (1991). Genetic control of slow ripening fruit trait in nectarine. Can. J. Plant Sci. 71, 601–603.

    Google Scholar 

  • Ramming, D.W. (1990) The use of embryo culture in fruit breeding. HortScience 25, 393–398.

    Google Scholar 

  • Ramming, D.W. (1985) In ovule embryo culture of early maturing Prunus. HortScience 20, 419–420.

    Google Scholar 

  • Ramming, D.W. and Tanner, O. (1983) ‘Nemared’ peach rootstock. HortScience 18 (3), 376.

    Google Scholar 

  • Raseira, M.C.B. Baptista da Silva, J., Herter, F. and Peters, J. A. (1992a ) Sensibilidade de gemas floríferas de pessegueiro, Prunus persica L. (Batsch) ao frio. Rev. Bras. Frutic., Cruz das Almas. 14, 167–172.

    Google Scholar 

  • Raseira, M.C.B., Byrne, D.H., Franzon, R.C. (2008) Pessegueiro – Tradição e poesia-. In, Rosa Lía Barbieri, Elisabeth Regina Tempel Stumpf. (Org.). Origem e evolução de plantas cultivadas. 1 ed. Brasília/DF, Embrapa Informação Tecnológica, 1, 679–705.

    Google Scholar 

  • Raseira, M.C.B. and Nakasu, B.H. (2006). Peach breeding program in Southern Brazil. Acta Hort. 713, 93–97.

    Google Scholar 

  • Raseira, M.C.B. and Nakasu, B.H. (2003). Cultivares. In: EMBRAPA – Pêssego Produção, Embrapa Informação Tecnológica, Brasília, pp. 41–50.

    Google Scholar 

  • Raseira, M.C.B., Silva, J.B., Herter, F. and Peters, J.A. (1992a) Sensibilidade de gemas floríferas de pessegueiro, Prunus persica L. (Batsch) ao frio. Rev. Bras. Frutic., Cruz das Almas, V.14, n. 1, 167–172.

    Google Scholar 

  • Raseira, M.C.B., Nakasu, B.H., Santos, A.M., Fortes, J.F., Martins, O.M., Raseira, A. and Bernardi, J. (1992) The CNPFT/EMBRAPA fruit breeding program in Brazil. HortScience 27, 1154–1157.

    Google Scholar 

  • Razeto, B. and Valdés, G. (2006) Effect of iron clorosis on yield, fruit size and fruit maturity in nectarine. 713, 227–230.

    Google Scholar 

  • Reighard, G.L. and Loreti, F. (2008) Rootstock development. In: D. Layne, and D. Bassi (Eds.), The Peach, Botany, Production and Uses. CAB International, Wallingford, U.K, pp. 193–220.

    Chapter  Google Scholar 

  • Reighard, G.L. (2002) Current directions of peach rootstock programs worldwide. Acta Hort. 592, 421–427.

    Google Scholar 

  • Reighard, G.L., Newall, W.C., Beckman, T.G., Okie, W.R., Zehr, E.I. and Nyczepir, A.P. (1997) Field performance of Prunus rootstock cultivars and selections on replant soils in South Carolina. Acta Hort. 451, 243–250.

    Google Scholar 

  • Renaud, R., Bernhard, R., Grasselly, C. and Dosba, F. (1988) Diploid plum × peach hybrid rootstocks for stone fruit trees. HortScience 23, 115–117.

    Google Scholar 

  • Riaz, A., Potter, D. and Southwick, S.M. (2004) Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J. Amer. Soc. Hort. Sci. 129, 204–210.

    Google Scholar 

  • Richards, G.D., Porter, G.W. Rodríguez, J. and Sherman, W.B. (1994) Incidence of blind nodes in low-chill peach and nectarine germplasm. Fruit Var. J. 48(4), 199–202.

    Google Scholar 

  • Ritchie, D.F. and Werner, D.J. (1981) Susceptibility and inheritance of susceptibility to peach leaf curl in peach and nectarine cultivars. Plant Dis. 65(9), 731–734.

    Article  Google Scholar 

  • Rivers, S. (1906) The cross-breeding of peaches and nectarines. Report on Third International Conference on Genetics, London, 463–467.

    Google Scholar 

  • Robertson, J.A., Meredith, F.L., Forbus, W.R. and Lyon, B.G. (1992). Relationship of quality characteristics of peach (cv. Loring) to maturity. J. Food Sci. 57, 1401–1404.

    Article  Google Scholar 

  • Rodríguez, J., Sherman, W.B. and Jasso, J. (1992) Evaluation of peach and nectarine germplasm for powdery mildew resistance (Sphaeroteca pannosa (Wallr.) Lev.). Acta Hort 315, 163–169.

    Google Scholar 

  • Rodríguez, A.J., Sherman, W.B., Scorza, R. and Wisniewski, M. (1994) ‘Evergreen’ peach, its inheritance and dormant behavior. J. Amer. Soc. Hort. Sci. 119, 789–792.

    Google Scholar 

  • Rom, R. and Carlson, R. (1985) Rootstocks for fruit crops. In: XXXX and XXX (Eds.) John Wiley & Sons, pp. 29–77.

    Google Scholar 

  • Rouse, R.E. and Sherman, W.B. (2002) Foliar rust resistance in low-chill peaches. Proc. Fla. State Hort. Soc. 115, 98–100.

    Google Scholar 

  • Rouse, R.E. and Sherman, W.B. (2002) High night temperatures during bloom affect fruit set in peach. Proc. Fla. State Hort. Soc. 115, 96–97.

    Google Scholar 

  • Rowe, R.N. and Catlin, P.B. (1971) Differential sensitivity to waterlogging and cyanogenesis by peach, apricot, and plum roots. J. Amer. Soc. Hort. Sci. 96, 305–308.

    Google Scholar 

  • Rubio, M., García-Ibarra, A., Martínez-Gómez, P. and Dicenta, F. (2009) Analysis of the main factors involved in the evaluation of Prunus resistance to Plum pox virus (Sharka) in controlled greenhouse conditions. Sci. Hort. 123, 46–50.

    Article  Google Scholar 

  • Rubio, M., Pascal, T., Bachellez, A. and Lambert, P. (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908, new insights on the organization of genomic resistance regions. Tree Gen Genomes 6, 291–304.

    Article  Google Scholar 

  • Rubio-Cabetas, M.J. Lecouls, A.C. Salesses, G. Bonnet, A. Minot, J.C. Voisin, R. and Esmenjaud D. (1998) Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breeding. 117 (6): 567–571.

    Article  Google Scholar 

  • Rubio-Cabetas, M. J., Amador, M.L., Gómez-Aparisi, J., Jaime S., and Sancho, S. (2011a) Physiological and biochemical parameters involved in waterlogging stress in Prunus. Acta Hort. (in press).

    Google Scholar 

  • Rubio-Cabetas M. J. (2011b) Present and future trends in peach rootstock breeding worldwide. Acta Hort. (in press).

    Google Scholar 

  • Salesses, G., Dirlewanger, E., Bonnet, A., Lecouls, A.C. and Esmenjaud, D. (1998) Interspecific hybridization and rootstock breeding for peach. Acta Hort. 465, 209–217.

    Google Scholar 

  • Salesses, G. and Bonnet A. (1992) Some physiological and genetic aspects of peach/plum graft incompatibility. Acta Hort. 315,177–186.

    Google Scholar 

  • Salesses, G. and Alkai, N. (1985) Simply inherited grafting incompatibility in peach. Acta Hort. 173, 57–62.

    Google Scholar 

  • Salesses, G. and Juste, C. (1970) Recherches sur l’asphyxie radiculaire des arbres fruitières à noyau. I- Rôle éventuel de certaines substances présentes dans les racines du pêcher Prunus persica. Ann. Amélior. Plantes 20, 87–103.

    Google Scholar 

  • Salesses, G., Saunier, H. and Bonnet, A. (1970) L’asphyxie radiculaire chez les arbres fruitières. Bull. Tech. Infor. 251, 403–415.

    Google Scholar 

  • Sansavini, S., Gamberini, A. and Bassi, D. (2006) Peach breeding, genetics and new cultivar trends. Acta Hort. 713, 23–48.

    Google Scholar 

  • Sauge, M.H. (1998) Analysis of the mechanisms of resistance to the green peach aphidin several Prunus genotypes. Acta Hort. 465, 731–739.

    Google Scholar 

  • Saunier, R. (1973) Contribution a l’étude des relations existant entre certains caractères a déterminisme génétique simple chez le pêcher et la sensibilité a l’oidium, Sphaeroteca pannosa (Wallr) Lev. des cultivars de cette espéce. Annales des Amélioration des Plantes, 23 (3), 235–243 (in French).

    Google Scholar 

  • Scorza, R. (2001) Progress in tree fruit improvement through molecular genetics. HortSci. 36, 855–858.

    Google Scholar 

  • Scorza, R., Bassi, D. and Liverani, A. (2002) Genetic interaction of pillar (columnar), compact and dwarf peach tree genotypes. J. Amer. Soc. Hort. Sci. 127, 254–261.

    Google Scholar 

  • Scorza, R. and Sherman, W.B. (1996) Peaches. In: J. Janick and J.N. Moore (Eds.), Fruit breeding Vol. I. Tree and Tropical Fruits. John Wiley & Sons, Inc., New York, U.S.A., pp. 325–440.

    Google Scholar 

  • Scorza, R. and Pooler, M. (1993) Development and testing of F1 hybrid peaches on alternative peach production strategy. HortScience 28, 95.

    Google Scholar 

  • Scorza, R. and W. Okie. (1990). Peaches, In: J.N. Moore and J. R. Ballington Jr (Eds.), Genetic resources of temperate fruit and nut crops. ISHS-Wageningen, The Netherlands, pp. 175–232.

    Google Scholar 

  • Scorza, R., Lightner, G.W. and Liverani, A. (1989) The Pillar peach tree and growth habit analysis of compact x Pillar progeny. J. Amer. Soc. Hort. Sci. 114, 991–995.

    Google Scholar 

  • Scorza, R., Mehlenbacher, S.A. and Lightner, G.W. (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J. Amer. Soc. Hort. Sci. 110, 547–552.

    Google Scholar 

  • Scorza, R., Miller, S., Glenn, D.M., Okie, W.R. and Tworkoski T. (2006) Developing peach cultivars with novel growth habits. Acta Hort. 713, 61–64.

    Google Scholar 

  • Scorza, R., Sherman, W.B., and Lightner, G.W. (1988) Inbreeding and co-ancestry of low chill short fruit development period freestone peaches and nectarines produced by the University of Florida breeding program. Fruit Var. J. 42,79–85.

    Google Scholar 

  • Scott, D.H. and Weinberger, J.H. (1944) Inheritance of pollen sterility in some peach varieties. J. Amer. Soc. Hort. Sci. 45, 229–232.

    Google Scholar 

  • Scott, D. H. and Cullinan, F. P. (1942) The inheritance of wavy-leaf character in the peach. J. Hered. 33, 293–295.

    Google Scholar 

  • Serrano, B., Gómez-Aparisi J., and Hormaza J.I. (2002) Molecular fingerprinting of Prunus rootstocks using SSRs. J. Hort. Sci. Biotech. 77, 368–372.

    CAS  Google Scholar 

  • Sharpe, R.H., Hesse, C.O., Lownsberry, B.F., Perry, V.G. and Hansen, C.J. (1970) Breeding peaches for root-knot nematode resistance. J. Amer. Soc. Hort. Sci. 94, 209–212.

    Google Scholar 

  • Sherman, W.B. and Lyrene, P.M. (2003) Low chill breeding of deciduous fruit at the University of Florida. Acta Hort. 622, 599–605.

    Google Scholar 

  • Sherman, W.B., and Rodriguez, A.J. (1987) Breeding low chill peach and nectarines for mild winters. HortScience 21, 1233–1236.

    Google Scholar 

  • Sherman, W.B. and Lyrene, P. M. (1984). Biannual peaches in the tropics. Fruit Var. J. 38, 37–39.

    Google Scholar 

  • Sherman, W.B. and Lyrene, P.M. (1981) Bacterial spot susceptibility in low chilling peaches. Fruit Var. J. 35, 74–77.

    Google Scholar 

  • Sherman, W.B., Sharpe, R.H. and Janick, J. (1973) The fruiting nursery, ultrahigh density for evaluation of blueberry and peach seedlings. HortScience 8, 170–172.

    Google Scholar 

  • Shi, Y. and Byrne, D.H. (1995) Tolerance of Prunus rootstocks to potassium carbonate-induced chlorosis. J. Amer. Soc. Hort. Sci. 120, 283–285.

    Google Scholar 

  • Shimada, T., Yamamoto, T., Hayama, H., Yamaguchi, M. and Hayashi, T. (2000) A genetic linkage map constructed by using an interspecific cross between peach cultivars grown in Japan. J. Japan. Soc. Hort. Sci. 69, 536–542.

    Article  CAS  Google Scholar 

  • Sinclair, J.W. and Byrne, D.H. (2003). In vitro growth of immature peach embryos as related to carbohydrate source. HortScience 38(4), 582.

    Google Scholar 

  • Smigocki, A.C. and Hammerschlag, F.A. (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J. Amer. Soc. Hort. Sci. 116, 1092–1097.

    Google Scholar 

  • Sosinski, B., Gannavarapu, M., Hager, L.D., Beck, L.E., King, G.J., Ryder, C.D., Rajapakse, S., Baird, W.V., Ballard, R.E. and Abbott, A.G. (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101, 421–428.

    Article  CAS  Google Scholar 

  • Sosinski, B., Sossey-Alaoui, K., Rajapakse, S., Glassmoyer, K., Ballard, R.E., Abbott, A.G., Lu, Z.X., Baird, W.V., Reighard, G.L., Tabb, A. and Scorza, R. (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach [Prunus persica (L.) Batsch] for use in marker assisted selection. Acta Hort. 465, 61–68.

    CAS  Google Scholar 

  • Souza, V.A.B., Byrne, D.H., Taylor, J.F. (2000) Predicted breeding values for nine plants and fruits characteristics of 28 peach genotypes. J. Amer. Soc. Hort. Sci. 125(4), 460–465.

    Google Scholar 

  • Souza, V.A. B., Byrne, D.H. and Taylor, J.F. (1998a) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach. I. An analysis of several reproductive traits. J. Amer. Soc. Hort. Sci. 123(4), 598–603.

    Google Scholar 

  • Souza, V.A. B., Byrne, D.H., Taylor, J.F. (1998b) Heritability, genetic and phenotypic correlations, and predicted selection response quantitative traits in peach. II. An analysis of several fruit traits. J. Amer. Soc. Hort. Sci. 123( 4), 604–611.

    Google Scholar 

  • Srinivasan, C., Padilla, I.M.G. and Scorza, R. (2005) Prunus spp. almond, apricot, cherry, nectarine, peach and plum In: R.E. Litz (Ed.), Biotechnology of Fruit and Nut Crops. CABI Publishing, pp. 512–542.

    Google Scholar 

  • Stebbins, G.L. Jr. (1950) Variation and evolution in plants. Columbia University Press, NY.

    Google Scholar 

  • Stushnoff, C. (1972) Breeding and selection methods for cold hardiness in deciduous fruit crops. HortScience 7, 10–13.

    Google Scholar 

  • Szabó, Z. 1992. Evaluation of cold hardiness of peach cultivars based on freezing injury to twigs. Acta Hort. 315, 219–228.

    Google Scholar 

  • Tagliavini, M. and Rombolà A.D. (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 15, 71–92.

    Article  CAS  Google Scholar 

  • Tatsuki M, Haji T, Yamaguchi M. (2006) The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot. 57(6), 1281–9.

    Article  PubMed  CAS  Google Scholar 

  • Trevisan, R., Gonçalves, E. D., Gonçalves, R., Antunes, L. E., and Herter, F. G. (2008) Influência do plastic branco, poda verde e amino quelant® na qualidade de pêssesgos ‘Santa Áurea’. Bragantia, Campinas 67, 243–247.

    Article  Google Scholar 

  • Todorovic, R.R. and Misic, P.D. (1982) Susceptibility of peach cultivars and seedlings to Taphrina deformans (Berk.) Tul. J. Yugoslay Pomol. 16, 97–102.

    Google Scholar 

  • Topp B. L., Sherman, W.B. and Raseira, M. C. B. (2008) Low-chill cultivar development. In, D. R. Layne and D. Bassi (Eds.), The Peach. Botany, Production and Uses. CAB International, Wallingford, UK, p. 106–138.

    Google Scholar 

  • Topp, B.L. and Sherman W.B. (2000) Breeding strategies for developing temperate fruits for the subtropics, with particular reference to Prunus. Acta Hort. 522, 235–240.

    Google Scholar 

  • Topp, B.L. and Sherman, W.B. (1989) Location influences on fruit traits of low-chill peaches in Australia. Proc. Florida State Horticultural Society 102,195–199.

    Google Scholar 

  • Toyama, T.K. (1974) Haploidy in peach. HortScience 9, 187–188.

    Google Scholar 

  • Tukey, H.B. (1934) Artificial culture methods for isolated embryos of decidous fruits. Proc. Am. Soc. Hort. Sci. 32, 313–322.

    Google Scholar 

  • USDA/ARS (2008) Identification and correction of germplasm redundancy/deficiency in the NPGS peach and almond collection, Davis, CA.

    Google Scholar 

  • Vauterin, L., Hoste, B., Kersters, K., Swings, J. (1995) Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 45,472–489.

    Article  CAS  Google Scholar 

  • Vendramin, E., Dettori, M. T., Giovinazzi, J., Micali, S., Quarta, R. and Verde, I. (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol. Ecol. Notes 7, 307–310.

    Article  CAS  Google Scholar 

  • Verde, I., Lauria, M., Dettori, M. T., Vendramin, E., Balconi, C., Micali, S., Wang, Y., Marrazzo, M. T., Cipriani, G., Hartings, H., Testolin, R., Abbott, A. G., Motto, M. and Quarta, R. (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] x P. ferganensis BC (1) linkage map, saturation and coverage improvement. Theor. Appl. Genet. 111, 1013–1021.

    Article  PubMed  CAS  Google Scholar 

  • Verde, I., Quarta, R., Cedrola, C. and Dettori, M.T. (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort. 592,291–297.

    CAS  Google Scholar 

  • Viruel, M. A., Madur, D., Dirlewanger, E., Pascal, T. and Kervella, J. (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort. 465,79–87.

    CAS  Google Scholar 

  • Vizzotto, M., Cisneros-Zevallos, L., Byrne, D., Ramming, D. W, Okie, W R. (2007) Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. Journal of the American Society for Horticultural Science, v. 132, p. 1–7, 2007.

    Google Scholar 

  • Wagner Jr., A, Raseira, M. C. B., Pierobom, C. R., Fortes, J. F., Silva, J. B. (2005a). Peach flower reaction to inoculation with Monilinia fructicola (Wint.) Honey) J. Amer. Pomol. Soc. 59(3), 141–147.

    Google Scholar 

  • Wagner Jr., A, Raseira, M. C. B., Pierobom, C. R., Fortes, J. F., Silva, J B. (2005b). Non-Correlation of Flower and Fruit Resistance to Brown Rot (Monilinia fructicola (Wint.) Honey) Among 27 Peach Cultivars and Selections. J. Amer. Pomol. Soc. 59,148–152.

    Google Scholar 

  • Wang, Y. (1985). Peach growing and germplasm in China. Acta Hort. 173, 51–55.

    Google Scholar 

  • Wang, L., Zhu, G. and Fang, W. (2002) Peach germplasm and breeding programs at Zhengzhou in China. Acta Hort. 592,177–182.

    Google Scholar 

  • Wang, Q., Zhang, K., Qu, X., Jia, J., Shi, J., Jin, D. and Wang, B. (2001) Construction and characterization of a bacterial artificial chromosome library of peach. Theor. Appl. Genet. 103, 1174–1179.

    Article  CAS  Google Scholar 

  • Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002a) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45,319–328.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002b) Genetic mapping of the ever growing gene in peach [Prunus persica (L.) Batsch]. J Hered 93,352–358.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. and Zhang, E. (2001) Chinese fruit documentation, Peach. Chinese Forestry Publisher. Beijing (In Chinese).

    Google Scholar 

  • Warburton, M.L. and Bliss, F.A. (1996) Genetic diversity in peach (Prunus persica L Batch) revealed by randomly amplified polymorphic DNA (RAPD) markers and compared to inbreeding coefficients. J. Amer. Soc. Hort. Sci. 121, 1012–1019.

    Google Scholar 

  • Wargovich, M. J. (2000). Anticancer properties of fruits and vegetables. HortScience 35, 573–575.

    CAS  Google Scholar 

  • Watkins, R. Cherry, plum, peach, apricot and almond. (1995). In, Smartt, J. e Simmonds, N.W. (Ed.) Evolution of crop plants. London, Longman Scientific & Technical, 1995. p. 423–429.

    Google Scholar 

  • Webster, A.D. (1995) Temperate fruit tree propagation. New Zealand J. Crop Hort. Sci. 23, 355–372.

    Article  Google Scholar 

  • Weinbaum, S.A. V.S. Polito, and D.E. Kester. (1986). Pollen retention following self pollination in peach, almond and peach almond  ×  hybrids. Euphytica 35, 883–889.

    Google Scholar 

  • Weinberger, J. H., Marth, P. C. and Scott, D. H. (1943) Inheritance study of root-knot nematode resistance in certain peach varieties. Proc. Amer. Soc. Hort. Sci. 42, 321–325.

    Google Scholar 

  • Werner, D.J. and Chaparro, J.X. (2005) Genetic interaction of pillar and weeping peach genotypes. HortScience 40, 18–20.

    Google Scholar 

  • Werner, D. J., Creller, M. A. and Chaparro, J. X. (1998) Inheritance of blood flesh in peach. HortScience 33, 1243–1246.

    Google Scholar 

  • Werner, D. J. and Creller, M. A. (1997) Genetic studies in peach, Inheritance of sweet kernel and male sterility. J. Amer. Soc. Hort. Sci. 122, 215–217.

    Google Scholar 

  • Werner, D.J, Mowrey, B.D. and Chaparro J.X. (1988) Variability in flower bud number among peach and nectarine cultivars. HortScience 23, 578–580.

    Google Scholar 

  • Westwood, M.N. (1978). Temperate zone pomology, W.H. Freeman & Co. San Francisco.

    Google Scholar 

  • World Trade and US Export Opportunities (2006). http//www.fas.usda.gov/htp_arc.asp.

  • Xiloyannis, C., Dichio, B., Tuzio, A.C., Gomez Aparisi, J., Rubio-Cabetas, M.J., Kleinhentz, M., Esmenjaud, D. (2007) Characterization and selection of Prunus rootstocks resistant to abiotic stresses: waterlogging, drought condition and iron chlorosis. Acta Hort. 732:247–250.

    Google Scholar 

  • Xu, D.H., S. Wayhuni, y. Sato, M. Yamaguchi, H.T. Senematsu, and T. Ban. (2006). Genetic diversity and relationships of Japanese peach (Prunus persica L.) cultivars revealed by AFLP and pedigree tracing. Genet. Resources and Crop Evolution 53, 883–889.

    Google Scholar 

  • Yamamoto, T. and Hayashi, T. (2002) New root-knot nematode resistance genes and their STS markers in peach. Scientia Hort. 96, 81–90.

    Article  CAS  Google Scholar 

  • Yamamoto, T., K. Mochida and T. Hayashi (2003) Shanhai Suimitsuto, one of the origins of Japanese peach cultivars. J. Japan. Soc. Hort. Sci 72,116–121.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Shimada, T., Imai, T., Yaegaki, H., Haji, T., Matsuta, N., Yamaguchi, M. and Hayashi, T. (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed. Sci. 51, 271–278.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Yamaguchi, M. and Hayashi, T. (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J. Japan. Soc. Hor. Sci. 74, 204–213.

    Article  CAS  Google Scholar 

  • Ye, X., Brown, S. K., Scorza, R., Cordts, J. and Sanford, J. C. (1994) Genetic transformation of peach tissues by particle bombardment. J. Amer. Soc. Hort. Sci. 119, 367–373.

    CAS  Google Scholar 

  • Yoon, J., D. Liu, W. Song, W. Liu, A. Zhang, and S. Li. (2006). Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J. Amer. Soc. Hort. Sci. 131,513–521.

    CAS  Google Scholar 

  • Yoshida, M. (1976). Genetical studies on the fruit quality of peach varieties, texture and keeping quality. Bull. Fruit Tree Res. Sta. A3, 1–16.

    Google Scholar 

  • Yoshida, M., Yamane, K. and Fujishige, N. (2000). Ornamental Peach cultivars in Japan. Summaries. Prunus Breeders Meeting 2000. Empresa Brasileira de Pesquisa Agropecuária, Clima Temperado. Pelotas (RS) Brazil. 29 Nov. – 2 Dec. 2000. p. 33–34.

    Google Scholar 

  • Yu, M., Ma, R, and Tang, X. (1997) Inheritance of ripening season in F1 hybrids of peach. Jiangsu J. Agr. Sci. 13(3),176–181.

    Google Scholar 

  • Yulin W. (2002). Peach, in Yulin W. (ed.) Genetic Resources of deciduous fruit and nut crop in China. China Agricultural Science and Technology Press, Beijing, p. 135–156.

    Google Scholar 

  • Zarrouk, O., Gogorcena, Y., Moreno, M.A., and Pinochet, J. (2006) Graft compatibility between peach cultivars and Prunus rootstocks. HortScience 41, 1389–1394.

    Google Scholar 

  • Zarrouk, O., Gogorcena Y., Gómez-Aparisi J., Betrán J.A. and Moreno M.A. (2005) Influence of peach x almond hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Sci. Hortic. 106(4), 502–514.

    Article  CAS  Google Scholar 

  • Zhebentyayeva, T., Swire-Clark, G., Georgi, L., Garay, L., Jung, S., Forrest, S., Blenda, A., Blackmon, B., Mook, J., Horn, R., Howad, W., Arús, P., Main, D., Tomkins, J., Sosinski., Baird, W. V., Reighard, G. L. and Abbott, A. G. (2008) A framework physical map for peach, a model Rosaceae species. Tree Genetics and Genomics 4, 745–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Byrne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Byrne, D.H. et al. (2012). Peach. In: Badenes, M., Byrne, D. (eds) Fruit Breeding. Handbook of Plant Breeding, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0763-9_14

Download citation

Publish with us

Policies and ethics