Skip to main content

The Neuropathology of Schizophrenia: Central Role for the Hippocampus?

  • Chapter
  • First Online:
Advances in Schizophrenia Research 2009

Abstract

A change in conceptual thinking about the pathogenesis of schizophrenia has occurred over the past decades. It is now hypothesized that the disorder has its origin on brain developmental neuropathology. The so-called neurodevelopmental hypothesis proposes that schizophrenia is related to adverse conditions leading to abnormal brain development during the pre- or postnatal period. This consequently leads to long-term changes in brain structure and brain malfunction, predisposing in term to functional deficits and to symptoms that respond to antidopaminergic drugs (Weinberger 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, W., Kendell, R.E., Hare, E.H., & Munk-Jorgensen, P. (1993) Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia. An analysis of Scottish, English, and Danish data. Br J Psychiatry 163: 522–534

    CAS  PubMed  Google Scholar 

  • Akbarian, S., Bunney, W.E. JR., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A., & Jones, E.G. (1993a) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50: 169–177

    Google Scholar 

  • Akbarian, S., Vinuela, A., Kim, J.J., Potkin, S.G., Bunney, W.E. Jr., & Jones, E.G. (1993b) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50: 178–187

    Google Scholar 

  • Andreasen, N.C. (1999) A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 56: 781–78

    CAS  PubMed  Google Scholar 

  • Arnold, S.E. (1997) The medial temporal lobe in schizophrenia. J Neuropsychiatry Clin Neurosci 9: 460–470

    CAS  PubMed  Google Scholar 

  • Arnold, S.E., Franz, B.R., Gur, R.C., Gur, R.E., Shapiro, R.M., Moberg, P.J., & Trojanowski, J.Q. (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions. Am J Psychiatry 152: 738–748

    CAS  PubMed  Google Scholar 

  • Arnold, S.E., Lee, V.M., Gur, R.E., & Trojanowski, J.Q. (1991) Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 88: 10850–10854

    CAS  PubMed  Google Scholar 

  • Aston, C., Jiang, L., & Sokolov, B.P. (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77: 858–866

    CAS  PubMed  Google Scholar 

  • Aylward, E., Walker, E., & Bettes, B. (1984) Intelligence in schizophrenia: meta-analysis of the research. Schizophr Bull 10: 430–459

    CAS  PubMed  Google Scholar 

  • Baldessarini, R.J., Hegarty, J.D., Bird, E.D., & Benes, F.M. (1997) Meta-analysis of postmortem studies of Alzheimer’s disease-like neuropathology in schizophrenia. Am J Psychiatry 154: 861–863

    CAS  PubMed  Google Scholar 

  • Becker, A., Grecksch, G., Bernstein, H.G., Hollt, V., & Bogerts, B. (1999) Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology (Berl) 144: 333–338

    CAS  Google Scholar 

  • Benes, F.M. (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15: 585–593

    CAS  PubMed  Google Scholar 

  • Benes, F.M., Kwok, E.W., Vincent, S.L., & Todtenkopf, M.S. (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44: 88–97

    CAS  PubMed  Google Scholar 

  • Benes, F.M., Mcsparren, J., Bird, E.D., Sangiovanni, J.P., & Vincent, S.L. (1991a) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001

    Google Scholar 

  • Benes, F.M., Sorensen, I., & Bird, E.D. (1991b) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 17: 597–608

    Google Scholar 

  • Benes, F.M., Turtle, M., Khan, Y., & Farol, P. (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51: 477–484

    CAS  PubMed  Google Scholar 

  • Bernstein, H.G., Krell, D., Baumann, B., Danos, P., Falkai, P., Diekmann, S., Henning, H., & Bogerts, B. (1998) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33: 125–132

    CAS  PubMed  Google Scholar 

  • Bertolino, A., Saunders, R.C., Mattay, V.S., Bachevalier, J., Frank, J.A., & Weinberger, D.R. (1997) Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 7: 740–748

    CAS  PubMed  Google Scholar 

  • Bogerts, B., Ashtari, M., Degreef, G., Alvir, J.M., Bilder, R.M., & Lieberman, J.A. (1990) Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Res 35: 1–13

    CAS  PubMed  Google Scholar 

  • Bogerts, B., Meertz, E., & Schonfeldt-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42: 784–791

    CAS  PubMed  Google Scholar 

  • Brown, A.S., Begg, M.D., Gravenstein, S., Schaefer, C.A., Wyatt, R.J., Bresnahan, M., Babulas, V.P., & Susser, E.S. (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61: 774–780

    PubMed  Google Scholar 

  • Brown, A.S., Susser, E.S., Butler, P.D., Richardson Andrews, R., Kaufmann, C.A., & Gorman, J.M. (1996) Neurobiological plausibility of prenatal nutritional deprivation as a risk factor for schizophrenia. J Nerv Ment Dis 184: 71–85

    CAS  PubMed  Google Scholar 

  • Byne, W., Kidkardnee, S., Tatusov, A., Yiannoulos, G., Buchsbaum, M.S. & Haroutunian, V. (2006) Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophr Res 85: 245–253

    PubMed  Google Scholar 

  • Callicott, J.H., Egan, M.F., Bertolino, A., Mattay, V.S., Langheim, F.J., Frank, J.A., & Weinberger, D.R. (1998) Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 44: 941–950

    CAS  PubMed  Google Scholar 

  • Cannon, T.D., Kaprio, J., Lonnqvist, J., Huttunen, M., & Koskenvuo, M. (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 55: 67–74

    CAS  PubMed  Google Scholar 

  • Casanova, M.F., & Rothberg B. (2002) Shape distortion of the hippocampus: a possible explanation of the pyramidal cell disarray reported in schizophrenia. Schizophr Res 55: 19–24

    PubMed  Google Scholar 

  • Chambers, R.A., Moore, J., Mcevoy, J.P., & Levin, E.D. (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15: 587–594

    CAS  PubMed  Google Scholar 

  • Chaudhury, A.R., Gerecke, K.M., Wyss, J.M., Morgan, D.G., Gordon, M.N., & Carroll, S.L. (2003) Neuregulin-1 and erbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease. J Neuropathol Exp Neurol 62: 42–54

    CAS  PubMed  Google Scholar 

  • Christison, G.W., Casanova, M.F., Weinberger, D.R., Rawlings, R., & Kleinman, J.E. (1989) A quantitative investigation of hippocampal pyramidal cell size, shape, and variability of orientation in schizophrenia. Arch Gen Psychiatry 46: 1027–1032

    CAS  PubMed  Google Scholar 

  • Colter, N., Battal, S., Crow, T.J., Johnstone, E.C., Brown, R., & Bruton, C. (1987) White matter reduction in the parahippocampal gyrus of patients with schizophrenia. Arch Gen Psychiatry 44: 1023

    CAS  PubMed  Google Scholar 

  • Conrad, A.J., Abebe, T., Austin, R., Forsythe, S., & Scheibel, A.B. (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry 48: 413–417

    CAS  PubMed  Google Scholar 

  • Cotter, D., Kerwin, R., Doshi, B., Martin, C.S., & Everall, I.P. (1997) Alterations in hippocampal non-phosphorylated MAP2 protein expression in schizophrenia. Brain Res 765: 238–46

    CAS  PubMed  Google Scholar 

  • Crow, T.J. (2007) How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry 164: 13–21

    PubMed  Google Scholar 

  • Crow, T.J., Ball, J., Bloom, S. R., Brown, R., Bruton, C.J., Colter, N., Frith, C.D., Johnstone, E.C., Owens, D.G., & Roberts, G.W. (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry 46: 1145–1150

    CAS  PubMed  Google Scholar 

  • Davis, K.L., Stewart, D.G., Friedman, J.I., Buchsbaum, M., Harvey, P.D., Hof, P.R., Buxbaum, J., & Haroutunian, V. (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60: 443–456

    PubMed  Google Scholar 

  • Dracheva, S., Davis, K.L., Chin, B., Woo, D.A., Schmeidler, J., & Haroutunian, V. (2006) Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 21: 531–540

    CAS  PubMed  Google Scholar 

  • Eyler, L.T., Jeste, D.V., & Brown, G.G. (2008) Brain response abnormalities during verbal learning among patients with schizophrenia. Psychiatry Res 162: 11–25

    PubMed  Google Scholar 

  • Falkai, P., & Bogerts B. (1986) Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci 236: 154–161

    CAS  PubMed  Google Scholar 

  • Falkai, P., Bogerts, B., Greve, B., Pfeiffer, U., Machus, B., Folsch-Reetz, B., Majtenyi, C., & Ovary, I. (1992) Loss of sylvian fissure asymmetry in schizophrenia. A quantitative post mortem study. Schizophr Res 7: 23–32

    CAS  PubMed  Google Scholar 

  • Falkai, P., Bogerts, B., & Rozumek, M. (1988) Limbic pathology in schizophrenia: the entorhinal region – a morphometric study. Biol Psychiatry 24: 515–521

    CAS  PubMed  Google Scholar 

  • Falkai, P., Honer, W.G., David, S., Bogerts, B., Majtenyi, C., & Bayer, T.A. (1999) No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25: 48–53

    CAS  PubMed  Google Scholar 

  • Falkai, P., Schneider-Axmann, T., & Honer, W.G. (2000) Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47: 937–943

    CAS  PubMed  Google Scholar 

  • Falls, D.L. (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284: 14–30

    CAS  PubMed  Google Scholar 

  • Friston, K.J., & Frith C.D. (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3: 89–97

    CAS  PubMed  Google Scholar 

  • Gerecke, K.M., Wyss, J.M., & Carroll, S.L. (2004) Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci 27: 379–393

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P.S., Selemon, L.D., & Schwartz, M.L. (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12: 719–743

    CAS  PubMed  Google Scholar 

  • Grecksch, G., Bernstein, H.G., Becker, A., Hollt, V., & Bogerts, B. (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20: 525–532

    CAS  PubMed  Google Scholar 

  • Green, M.F., Satz, P., Gaier, D.J., Ganzell, S., & Kharabi, F. (1989) Minor physical anomalies in schizophrenia. Schizophr Bull 15: 91–99

    CAS  PubMed  Google Scholar 

  • Gruber, O., Falkai, P., Schneider-Axmann, T., Schwab, S.G., Wagner, M., & Maier, W. (2008) Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 19: 19

    Google Scholar 

  • Hakak, Y., Walker, J.R., Li, C., Wong, W.H., Davis, K.L., Buxbaum, J.D., Haroutunian, V., & Fienberg, A.A. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98: 4746–4751

    CAS  PubMed  Google Scholar 

  • Hall, J., Whalley, H.C., Job, D.E., Baig, B.J., Mcintosh, A.M., Evans, K.L., Thomson, P.A., Porteous, D.J., Cunningham-Owens, D.G., Johnstone, E.C., & Lawrie, S.M. (2006) A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 9: 1477–1478

    CAS  PubMed  Google Scholar 

  • Harrison, P.J., & Eastwood S.L. (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 11: 508–519

    CAS  PubMed  Google Scholar 

  • Harrison, P.J., & Weinberger D.R. (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68

    CAS  PubMed  Google Scholar 

  • Heckers, S., Heinsen, H., Geiger, B., & Beckmann, H. (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48: 1002–1008

    CAS  PubMed  Google Scholar 

  • Highley, J.R., Walker, M.A., McDonald, B., Crow, T.J., & Esiri, M.M. (2003) Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry 183: 414–417

    CAS  PubMed  Google Scholar 

  • Hirayasu, Y., Shenton, M.E., Salisbury, D.F., Dickey, C.C., Fischer, I.A., Mazzoni, P., Kisler, T., Arakaki, H., Kwon, J.S., Anderson, J.E., Yurgelun-Todd, D., Tohen, M., & Mccarley, R.W. (1998) Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 155: 1384–1391

    CAS  PubMed  Google Scholar 

  • Hof, P.R., Haroutunian, V., Copland, C., Davis, K.L., & Buxbaum, J.D. (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27: 1193–1200

    CAS  PubMed  Google Scholar 

  • Hong, L.E., Wonodi, I., Stine, O.C., Mitchell, B.D., Thaker, G.K. (2008) Evidence of missense mutations on the neuregulin 1 gene affecting function of prepulse inhibition. Biol Psychiatry 63: 17–23

    CAS  PubMed  Google Scholar 

  • Jakob, H., & Beckmann H. (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326

    CAS  PubMed  Google Scholar 

  • Jaskiw, G.E., Juliano, D. M., Goldberg, T.E., Hertzman, M., Urow-Hamell, E., & Weinberger, D.R. (1994) Cerebral ventricular enlargement in schizophreniform disorder does not progress. A seven year follow-up study. Schizophr Res 14: 23–28

    CAS  PubMed  Google Scholar 

  • Jeste, D.V., & Lohr J.B. (1989) Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry 46: 1019–1024

    CAS  PubMed  Google Scholar 

  • Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994) Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398–1402

    CAS  PubMed  Google Scholar 

  • Kaplan, M.J., Lazoff, M., Kelly, K., Lukin, R., & Garver, D.L. (1990) Enlargement of cerebral third ventricle in psychotic patients with delayed response to neuroleptics. Biol Psychiatry 27: 205–214

    CAS  PubMed  Google Scholar 

  • Katsel, P., Davis, K.L., & Haroutunian, V. (2005) Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 79: 157–173

    PubMed  Google Scholar 

  • Kovalenko, S., Bergmann, A., Schneider-Axmann, T., Ovary, I., Majtenyi, K., Havas, L., Honer, W.G., Bogerts, B., & Falkai, P. (2003) Regio entorhinalis in schizophrenia: more evidence for migrational disturbances and suggestions for a new biological hypothesis. Pharmacopsychiatry 36: S158–161

    PubMed  Google Scholar 

  • Kovelman, J.A., & Scheibel A.B. (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19: 1601–1621

    CAS  PubMed  Google Scholar 

  • Kwon, O.B., Longart, M., Vullhorst, D., Hoffman, D.A., & Buonanno, A. (2005) Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci 25: 9378–9383

    CAS  PubMed  Google Scholar 

  • Lane, A., Kinsella, A., Murphy, P., Byrne, M., Keenan, J., Colgan, K., Cassidy, B., Sheppard, N., Horgan, R., Waddington, J.L., Larkin, C., & O’callaghan, E. (1997) The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Psychol Med 27: 1155–1164

    CAS  PubMed  Google Scholar 

  • Law, A.J., Lipska, B.K., Weickert, C.S., Hyde, T.M., Straub, R.E., Hashimoto, R., Harrison, P.J., Kleinman, J.E., & Weinberger, D.R. (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’ SNPs associated with the disease. Proc Natl Acad Sci USA 103: 6747–6752

    CAS  PubMed  Google Scholar 

  • Law, A.J., Shannon Weickert, C., Hyde, T.M., Kleinman, J.E., & Harrison, P.J. (2004a) Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 127: 125–136

    Google Scholar 

  • Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E., & Harrison, P.J. (2004b) Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am J Psychiatry 161: 1848–1855

    Google Scholar 

  • Le Pen, G., Gaudet, L., Mortas, P., Mory, R., & Moreau, J.L. (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl) 161: 434–441

    Google Scholar 

  • Li, D., Collier, D.A., & He, L. (2006) Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 15: 1995–2002

    CAS  PubMed  Google Scholar 

  • Lim, K.O., Ardekani, B.A., Nierenberg, J., Butler, P.D., Javitt, D.C., & Hoptman, M.J. (2006) Voxelwise correlational analyses of white matter integrity in multiple cognitive domains in schizophrenia. Am J Psychiatry 163: 2008–2010

    PubMed  Google Scholar 

  • Lipska, B.K. (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29: 282–286

    PubMed  Google Scholar 

  • Lipska, B.K., Aultman, J.M., Verma, A., Weinberger, D.R., & Moghaddam, B. (2002a) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27: 47–54

    Google Scholar 

  • Lipska, B.K., Halim, N.D., Segal, P.N., & Weinberger, D.R. (2002b) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22: 2835–2842

    Google Scholar 

  • Lipska, B.K., Jaskiw, G.E., & Weinberger, D.R. (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9: 67–75

    CAS  PubMed  Google Scholar 

  • Lipska, B.K., Swerdlow, N.R., Geyer, M.A., Jaskiw, G.E., Braff, D.L., & Weinberger, D.R. (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122: 35–43

    CAS  Google Scholar 

  • Lipska, B.K., & Weinberger D.R. (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23: 223–239

    CAS  PubMed  Google Scholar 

  • Maier, W., Zobel, A., & Rietschel, M. (2003) Genetics of schizophrenia and affective disorders. Pharmacopsychiatry 36: S195–202

    CAS  PubMed  Google Scholar 

  • McNeil, T.F., Cantor-Graae, E., Nordstrom, L.G., & Rosenlund, T. (1993) Head circumference in “preschizophrenic” and control neonates. Br J Psychiatry 162: 517–523

    CAS  PubMed  Google Scholar 

  • McNeil, T.F., Cantor-Graae, E., & Weinberger, D.R. (2000) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157: 203–212

    CAS  PubMed  Google Scholar 

  • Munafo, M.R., Attwood, A.S., & Flint, J. (2008) Neuregulin 1 genotype and schizophrenia. Schizophr Bull 34: 9–12

    PubMed  Google Scholar 

  • Munafo, M.R., Thiselton, D.L., Clark, T.G., & Flint, J. (2006) Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 11: 539–546

    CAS  PubMed  Google Scholar 

  • Nasrallah, H.A., Skinner, T.E., Schmalbrock, P., & Robitaille, P.M. (1994) Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study. Br J Psychiatry 165: 481–485

    CAS  PubMed  Google Scholar 

  • Nordahl, T.E., Kusubov, N., Carter, C., Salamat, S., Cummings, A.M., O’SHORA-Celaya, L., Eberling, J., Robertson, L., Huesman, R.H., Jagust, W., & Budinger, T.F. (1996) Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600. Neuropsychopharmacology 15: 541–554

    CAS  PubMed  Google Scholar 

  • Parlapani, E., Schmitt, A., Wirths, O., Bauer, M., Sommer, C., Rueb, U., Skowronek, M.H., Treutlein, J., Petroianu, G.A., Rietschel, M., & Falkai, P. (2008) Gene expression of neuregulin-1 isoforms in different brain regions of elderly schizophrenia patients. World J Biol Psychiatry 7: 1–8

    Google Scholar 

  • Pegues, M.P., Rogers, L.J., Amend, D., Vinogradov, S., & Deicken, R.F. (2003) Anterior hippocampal volume reduction in male patients with schizophrenia. Schizophr Res 60: 105–115

    PubMed  Google Scholar 

  • Rametti, G., Segarra, N., Junque, C., Bargallo, N., Caldu, X., Ibarretxe, N., & Bernardo, M. (2007) Left posterior hippocampal density reduction using VBM and stereological MRI procedures in schizophrenia. Schizophr Res 961–3: 62–71

    Google Scholar 

  • Rosoklija, G., Toomayan, G., Ellis, S.P., Keilp, J., Mann, J.J., Latov, N., Hays, A.P., & Dwork, A.J. (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 57: 349–356

    CAS  PubMed  Google Scholar 

  • Sams-Dodd, F., Lipska, B.K., & Weinberger, D.R. (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood Psychopharmacology (Berl) 132: 303–310

    CAS  Google Scholar 

  • Saykin, A.J., Shtasel, D.L., Gur, R.E., Kester, D.B., Mozley, L.H., Stafiniak, P., & Gur, R.C. (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51: 124–131

    CAS  PubMed  Google Scholar 

  • Schmitt, A., Parlapani, E., Gruber, O., Wobrock, T., & Falkai, P. (2008a) Impact of neuregulin-1 on the pathophysiology of schizophrenia in human post-mortem studies. Eur Arch Psychiatry Clin Neurosci 258: 35–39

    Google Scholar 

  • Schmitt, A., Steyskal, C., Bernstein, H.G., Schneider-Axmann, T., Parlapani, E., Schaeffer, E.L., Gattaz, W.F., Bogerts, B., Schmitz, C., & Falkai, P. (2008b) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 6: 6

    Google Scholar 

  • Seidman, L.J., Faraone, S.V., Goldstein, J.M., Kremen, W.S., Horton, N.J., Makris, N., Toomey, R., Kennedy, D., Caviness, V.S., & Tsuang, M.T. (2002) Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59: 839–849

    PubMed  Google Scholar 

  • Shenton, M.E., Dickey, C.C., Frumin, M., & Mccarley, R.W. (2001) A review of MRI findings in schizophrenia. Schizophr Res 49: 1–52

    CAS  PubMed  Google Scholar 

  • Stark, A.K., Uylings, H.B., Sanz-Arigita, E., & Pakkenberg, B. (2004) Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. Am J Psychiatry 161: 882–888

    PubMed  Google Scholar 

  • Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., Brynjolfsson, J., Gunnarsdottir, S., Ivarsson, O., Chou, T.T., Hjaltason, O., et al. (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892

    PubMed  Google Scholar 

  • Stevens, J.R. (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39: 1131–1139

    CAS  PubMed  Google Scholar 

  • Szeszko, P.R., Goldberg, E., Gunduz-Bruce, H., Ashtari, M., Robinson, D., Malhotra, A.K., Lencz, T., Bates, J., Crandall, D.T., Kane, J.M., & Bilder, R.M. (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 160: 2190–2197

    PubMed  Google Scholar 

  • Talamini, L.M., Meeter, M., Elvevag, B., Murre, J.M., & Goldberg, T.E. (2005) Reduced parahippocampal connectivity produces schizophrenia-like memory deficits in simulated neural circuits with reduced parahippocampal connectivity. Arch Gen Psychiatry 62: 485–493

    PubMed  Google Scholar 

  • Tregellas, J.R., Tanabe, J.L., Miller, D.E., Ross, R.G., Olincy, A., & Freedman, R. (2004) Neurobiology of smooth pursuit eye movement deficits in schizophrenia: an fMRI study. Am J Psychiatry 161: 315–321

    PubMed  Google Scholar 

  • Uranova, N.A., Vostrikov, V.M., Vikhreva, O.V., Zimina, I.S., Kolomeets, N.S., & Orlovskaya, D.D. (2007) The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 10: 537–545

    CAS  PubMed  Google Scholar 

  • Van Erp, T.G., Saleh, P.A., Rosso, I.M., Huttunen, M., Lonnqvist, J., Pirkola, T., Salonen, O., Valanne, L., Poutanen, V.P., Standertskjold-Nordenstam, C.G., & Cannon, T.D. (2002) Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159: 1514–1520

    PubMed  Google Scholar 

  • Velakoulis, D., Pantelis, C., Mcgorry, P.D., Dudgeon, P., Brewer, W., Cook, M., Desmond, P., Bridle, N., Tierney, P., Murrie, V., Singh, B., & Copolov, D. (1999) Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 56: 133–141

    CAS  PubMed  Google Scholar 

  • Velakoulis, D., Stuart, G.W., Wood, S.J., Smith, D.J., Brewer, W.J., Desmond, P., Singh, B., Copolov, D., & Pantelis, C. (2001) Selective bilateral hippocampal volume loss in chronic schizophrenia. Biol Psychiatry 50: 531–539

    CAS  PubMed  Google Scholar 

  • Walker, M.A., Highley, J.R., Esiri, M.M., Mcdonald, B., Roberts, H.C., Evans, S.P., & Crow, T.J. (2002) Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 159: 821–828

    PubMed  Google Scholar 

  • Wan, R.Q., Giovanni, A., Kafka, S.H., & Corbett, R. (1996) Neonatal hippocampal lesions induced hyperresponsiveness to amphetamine: behavioral and in vivo microdialysis studies. Behav Brain Res 78: 211–223

    CAS  PubMed  Google Scholar 

  • Weinberger, D.R. (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14: 1S–11S

    CAS  PubMed  Google Scholar 

  • Weinberger, D.R. (1999)Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45: 395–402

    CAS  PubMed  Google Scholar 

  • Winterer, G., Konrad, A., Vucurevic, G., Musso, F., Stoeter, P., & Dahmen, N. (2008) Association of 5’ end neuregulin-1 (NRG1) gene variation with subcortical medial frontal microstructure in humans. Neuroimage 40: 712–718

    PubMed  Google Scholar 

  • Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W., David, A.S., Murray, R.M., & Bullmore, E.T. (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25

    CAS  PubMed  Google Scholar 

  • Yamasue, H., Iwanami, A., Hirayasu, Y., Yamada, H., Abe, O., Kuroki, N., Fukuda, R., Tsujii, K., Aoki, S., Ohtomo, K., Kato, N., & Kasai, K. (2004) Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res 131: 195–207

    PubMed  Google Scholar 

  • Zaidel, D.W., Esiri, M.M., & Harrison, P.J. (1997a) The hippocampus in schizophrenia: lateralized increase in neuronal density and altered cytoarchitectural asymmetry. Psychol Med 27: 703–713

    Google Scholar 

  • Zaidel, D.W., Esiri, M.M., & Harrison, P.J. (1997b) Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 154: 812–818

    Google Scholar 

  • Zhang, Z., Sun, J., & Reynolds, G.P. (2002) A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients. Chin Med J (Engl) 115: 819–823

    Google Scholar 

  • Zhou, Y., Shu, N., Liu, Y., Song, M., Hao, Y., Liu, H., Yu, C., Liu, Z., & Jiang, T. (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100: 120–132

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Falkai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Falkai, P., Parlapani, E., Gruber, O., Schmitt, A. (2010). The Neuropathology of Schizophrenia: Central Role for the Hippocampus?. In: Gattaz, W., Busatto, G. (eds) Advances in Schizophrenia Research 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0913-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0913-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0912-1

  • Online ISBN: 978-1-4419-0913-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics