Skip to main content

Peptides as Molecular Receptors

  • Chapter
  • First Online:
Recognition Receptors in Biosensors

Abstract

The use of specific and sensitive sensing layers for molecular diagnosis and biosensor developments is crucial for producing a successful device. The sensing layers are required to be stable and robust for sample analysis (serum, urine, water, soil extracts and foods), storage and application in field conditions. Therefore, the technology is advancing to replace nature molecules with synthetic materials that are more stable and robust for sensing purposes. A range of novel approaches have recently been used based on synthetic chemistry and computational methodologies to complement natural affinity systems with synthetic ligands. Peptides have emerged as one of the promising approaches to synthetic biomimics. The characteristic properties of synthetic peptides can render them as potential alternatives to antibodies and natural receptors for biosensor application. Different methodologies are used today to design and discover sensitive and selective peptides for specific analytes. These include computational chemistry, combinatorial chemistry, phage display technology and molecular imprinting. This chapter introduces the concept of using peptides as sensing materials and cover methods of their design, selection, synthesis and use as receptors in sensors and diagnostics applications. Problems and challenges facing this technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid

SPE:

Solid phase extraction columns

HPLC:

High-performance liquid chromatography

GC:

Gas chromatography

CAMD:

Computer-aided molecular design

MIPs:

Molecularly Imprinted Polymers

PEGA:

Polyethylene glycol acrylamide

HTS:

High-throughput screening

DCL:

Dynamic combinatorial library

NMQ:

N-methyl quinuclidinium iodide

Ach:

Acetylcholine iodide

ab MCR:

Aqueous-based Multi-Component Reaction

NMR:

Nuclear magnetic resonance

QSAR:

Quantitative structure-activity relationships

SPR:

Surface plasmon resonance

QCM:

Quartz crystal microbalance

References

  • Alberts IL, Todorov NP, Dean PM (2005) Receptor flexibility in de novo ligand design and docking. J Med Chem 48(21):6585–6596

    Article  Google Scholar 

  • Allinger NL (1977) Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134

    Article  Google Scholar 

  • Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons I. J Am Chem Soc 111:8551–8566

    Article  Google Scholar 

  • Allinger NL, Li F, Yan L (1990) Molecular mechanics. The MM3 force field for alkenes. J Comput Chem 11:848–867

    Article  Google Scholar 

  • Allinger NL, Chen JA, Lii JH (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17:642–668

    Article  Google Scholar 

  • Antel J (1999) Integration of combinatorial chemistry and structure-based drug design. Curr Opin Drug Discov Devel 2:224–233

    Google Scholar 

  • Apostolakis J, Caflisch A (1999) Computational ligand design. Comb Chem High Throughput Screen 2(2):91–104

    Google Scholar 

  • Arap MA (2005) Phage display technology: applications and innovations. Genet Mol Biol 28:1–9 ISSN 1415-4757

    Article  Google Scholar 

  • Azzazy HM, Highsmith WE Jr (2002) Phage display technology: clinical applications and recent innovations. Clin Biochem 35:425–445

    Article  Google Scholar 

  • Barbas CF, Burton DR, Scott JK, Silverman GJ (2000) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–24

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W.H. Freeman and Co Ltd, New York, NY. ISBN ISBN 978-0716767664

    Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  • Bertelli M, El-Bastawissy E, Knaggs MH, Barratt MP, Hanau S, Gilbert IH (2001) Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei. J Comput Aided Mol Des 15:465–475

    Article  Google Scholar 

  • Blundell TL, Jhotti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  Google Scholar 

  • Bohacek RS, McMartin C (1997) Modern computational chemistry and drug discovery: structure generating programs. Curr Opin Chem Biol 1:157–161

    Article  Google Scholar 

  • Böhm HJ (1992) The computer program Ludi: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

    Article  Google Scholar 

  • Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243

    Article  Google Scholar 

  • Böhm HJ (1995) Site-directed structure generation by fragment-joining. Perspect Drug Discov Des 3:21–33

    Article  Google Scholar 

  • Böhm HJ (1996) Towards the automatic design of synthetically accessible protein ligands: peptides, amides and peptidomimetics. J Comput Aided Mol Des 10:265–272

    Article  Google Scholar 

  • Böhm HJ, Klebe G (1996) What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs? Angew Chem Int Ed Engl 35:2588–2614

    Article  Google Scholar 

  • Brady PA, Sanders JKM (1997a) Selection approaches to catalytic systems. Chem Soc Rev 26:326–337

    Article  Google Scholar 

  • Brady PA, Sanders JKM (1997b) J Chem Soc Perkin Trans 1:3237–3253

    Article  Google Scholar 

  • Brisig B, Sanders JKM, Otto S (2003) Angew Chem Int Ed 42(11):1270–1273

    Article  Google Scholar 

  • Bursavich MG, Rich DH (2002) Designing non-peptides peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem 31:541–558

    Article  Google Scholar 

  • Calama MC, Hulst R, Fokkens R, Nibbering, NMM, Timmerman P, Reinhoudt DN (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem Commun 1021–1022

    Google Scholar 

  • Chen B, Bestetti G, Turner APF (1998) The synthesis and screening of a combinatorial library for affinity ligands for glycosylated haemoglobin. Biosens Bioelectron 13:779–785

    Article  Google Scholar 

  • Chianella I, Lotierzo M, Piletsky S, Tothill IE, Chen B, Turner APF (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    Article  Google Scholar 

  • Chianella I, Karim K, Piletska E, Preston C, Piletsky SA (2006) Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir. Anal Chim Acta 559:73–78

    Article  Google Scholar 

  • Christensen IT, Jorgensen FS (1997) Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies. J Biomol Struct Dyn 15:473–488

    Google Scholar 

  • Clark M, Cramer RD, Vanopdenbosh N (1989) Validation of the general-purpose Tripos 5.2 force-field. J Comput Chem 10:982–1012

    Article  Google Scholar 

  • Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711

    Article  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  • Cousins GRL, Poulsen S-A, Sanders JKM (1999) Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles. Chem Commun 1575–1576

    Google Scholar 

  • Cousins GRL, Poulsen S-A, Sanders JKM (2000) Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. Curr Opin Chem Biol 4:270–279

    Article  Google Scholar 

  • Cousins GRL, Furlan RLE, Ng YF, Redman JE, Sanders JKM (2001) Angew Chem Int Ed Engl 40:423–428

    Article  Google Scholar 

  • Crabtree RH (1999) Combinatorial and raid screening approaches to homogeneous catalyst discover and optimization. Chem Commun 1611–1616

    Google Scholar 

  • Cramer RD (1983) Computer graphics in drug design. Pharm Int 106–107

    Google Scholar 

  • Day R (1999) The development of a synthetic receptor specific to glycosylated haemoglobine for biosensing application. PhD thesis, Cranfield University

    Google Scholar 

  • DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283

    Article  Google Scholar 

  • Diercks T, Coles M, Kessler H (2001) Applications of NMR in drug discover. Curr Opin Chem Biol 5:285–291

    Article  Google Scholar 

  • Eguchi M, Kahn M (2002) Design, synthesis and application of peptide secondary structure mimetics. Mini Rev Med Chem 2:447–462

    Article  Google Scholar 

  • El-Hajji S, Gannon G, Chen B, Tothill IE (2003a) Development of artificial receptor for androgen detection, affinity interactions 2003. 15th international conference, 27 July–1 August, Cambridge, UK

    Google Scholar 

  • El-Hajji S, Gannon G, Chen B, Tothill IE (2003b) Artificial receptor development for androgen residues. Synthetic receptor conference, 15–17 October, Lisbon, Portugal

    Google Scholar 

  • Fontana W, Stadler PF, Tarazona P, Weinberger ED, Schuster P (1993) Phys Rev E 47:2083–2099

    Article  Google Scholar 

  • Forst CV, Reidys C, Weber J (1995) In: Moran F (ed) Advances in artificial life, vol 929. Springer, Berlin, pp 3628–4147

    Google Scholar 

  • Furlan RLE, Cousins GRL, Sanders JKM (2000) Chem Commun 18:1761–1762

    Article  Google Scholar 

  • Furlan RLE, Ng YF, Otto S, Sanders JKM (2001) J Am Chem Soc 123(36):8876–8877

    Article  Google Scholar 

  • Ganesan A (1998) Strategies for the dynamic integration of combinatorial synthesis and screening. Angew Chem Int Ed Engl 37:2828–2831

    Article  Google Scholar 

  • Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23:709–715

    Article  Google Scholar 

  • Giraudi G, Giovannoli C, Tozzi C, Baggiani C, Anfossi L (2000) Estradiol binding synthetic polypeptides. Chem Commun 13:1135–1136

    Article  Google Scholar 

  • Giraudi G, Giovannoli C, Tozzi C, Baggiani C, Anfossi L (2003) Molecular recognition properties of peptide mixtures obtained by polymerisation of amino acids in the presence of estradiol. Anal Chim Acta 481:41–53

    Article  Google Scholar 

  • Goodford PJ (1985) A computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  Google Scholar 

  • Goodman JM (1998) Chemical applications of molecular modelling. Royal Society of Chemistry Press, London. ISBN ISBN 0-85404-579-1

    Google Scholar 

  • Gunsteren WF, Dolenc J, Mark AE (2008) Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 18(2):149–153

    Google Scholar 

  • Gutte B, Däumigen M, Wittschieber E (1979) Design, synthesis and characterisation of a 34-residue polypeptide that interacts with nucleic acids. Nature 281:650–655

    Article  Google Scholar 

  • Hagiwara D, Miyake H, Murano K, Morimoto H, Murai M, Fujii T, Nakanishi I, Matsuo M (1993) Studies on neurokinin antagonist. 3, Design and structure-activity relationships of new branched tripeptide Na-(substituted L-apartyl, L-ornithyl, or L-lysyl)-N-methyl-N-(phenylmethyl)-L-phenylalaninamides as substance P antagonist. J Med Chem 36:2266–2278

    Article  Google Scholar 

  • Hajduk PJ, Meadows RP, Fesik SW (1999) NMR-based screening in drug discovery. Q Rev Biophys 32:211–240

    Article  Google Scholar 

  • Hamilton DG, Feeder N, Teat SJ, Sanders JKM (1998) Reversible synthesis of Ï€-associated [2] catenanes by ring-closing metathesis: towards dynamic combinatorial libraries of catenanes. New J Chem 22:1019–1021

    Article  Google Scholar 

  • Heurich M (2008) Development of an affinity sensor for ochratoxin A. PhD thesis, Cranfield University, England, UK

    Google Scholar 

  • Hioki H, Still WC (1998) Chemical evolution: a model system that selects and amplifies a receptor for the tripeptide (d)Pro(L)Val(D)Val. J Org Chem 63(4):904–905

    Article  Google Scholar 

  • Hochgurtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV (2002) Proc Natl Acad Sci USA 99(6):3382–3387

    Article  Google Scholar 

  • Hochgurtel M, Biesinger R, Kroth H, Piecha D, Hofmann MW, Krause S, Schaaf O, Nicolau C, Eliseev AV (2003) J Med Chem 46(3):356–358

    Article  Google Scholar 

  • Hollman AM, Scherrer NT, Cammers-Goodwin A, Bhattacharyya D (2004) Separation of dilute electrolytes in poly(amino acid) functionalized microporous membranes: model evaluation and experimental results. J Memb Sci 239:65–79

    Article  Google Scholar 

  • Höltje HD, Sippl W, Rognan D, Folkers G (2008) Molecular modeling: basic principle and application, 3rd edn. Wiley-VCH, Weinheim, p 310. ISBN: 978-3-527-31568-0In: Mannhold R, Kubiny H, Timmerman H (eds)

    Google Scholar 

  • Huc I, Lehn JM (1997) Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94:2106–2110

    Article  Google Scholar 

  • Huc I, Nguyen R (2001) Dynamic combinatorial chemistry. Comb Chem High Throughput Screen 4:53–74

    Google Scholar 

  • Jin AY, Leung FY, Weaver DFJ (1997) J Comput Chem 18:1971–1984

    Article  Google Scholar 

  • Jones DT (1994) Protein Sci 3:567–574

    Article  Google Scholar 

  • Jones G, Willett P (1995) Docking small-molecule ligands into active sites. Curr Opin Biotechnol 6:652–656

    Article  Google Scholar 

  • Karan C, Miller BL (2001) J Am Chem Soc 123:7455–7456

    Article  Google Scholar 

  • Katayama Y, Ohuchi Y, Higashi H, Kudo Y, Maeda M (2000) The design of cyclic AMP-recognizing oligopeptides and evaluation of its capability for cyclic AMP recognition using and electrochemical system. Anal Chem 72:4671–4674

    Article  Google Scholar 

  • Kay BK, Adey NB, He YS, Manfredi JP, Mataragnon AH, Fowlkes DM (1993) An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets. Gene 128:59–65

    Article  Google Scholar 

  • Kempe M (1996) Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal Chem 68:1948–1953

    Article  Google Scholar 

  • Klekota B, Miller BJ (1999) Dynamic diversity and small molecule evolution: a new paradigm for ligand identification. Trends Biotechnol 17:205–209

    Article  Google Scholar 

  • Kobayashi S, Kitadai M, Sameshima K, Ishii Y, Tanaka A (1999) A theoretical investigation of the conformational changing of dioxins in the binging site of dioxin receptor model; role of absolute hardness – electronegativity activity diagrams for biological activity. J Mol Struct 475:203–217

    Article  Google Scholar 

  • Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R (1999) Identification of receptor ligands with phage display peptide libraries. J Nucl Med 40:883–888

    Google Scholar 

  • Kollman P (1993) Free energy calculations-applications to chemical and biological phenomena. Chem Rev 93:2395–2417

    Article  Google Scholar 

  • Krasinski A, Radic Z, Manetsch R, Raushel J, Taylor P, Sharpless KB, Kolb HC (2005) J Am Chem Soc 127:6686–6692

    Article  Google Scholar 

  • Krovat EM, Steindl T, Langer T (2005) Recent advances in docking and scoring. Curr Comput Aided Drug Des 1:93–102

    Article  Google Scholar 

  • Kubota Y, Sakamoto S, Yamaguchi K, Fujita M (2002) Proc Natl Acad Sci USA 99:4854–4856

    Article  Google Scholar 

  • Labanowski J, Motoc I, Naylor CB, Mayer D, Dammkoehler RA (1986) Three-dimensional quantitative structure-activity relationships. 2. Conformational mimicry and topographical similarity of flexible molecules. Quant Struct-Act Rel 5:138–152

    Article  Google Scholar 

  • Lam KS, Renil M (2002) From combinatorial chemistry to chemical microarray. Curr Opin Chem Biol 6:353–358

    Article  Google Scholar 

  • Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand binding activity. Nature 354:82–84

    Article  Google Scholar 

  • Lavastre O, Morkrn JP (1999) Discovery of novel catalysts for allylic alkylation with a visual colorimetric assay. Angew Chem Int Ed Engl 38:3163–3165

    Article  Google Scholar 

  • Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463

    Article  Google Scholar 

  • Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW (2001) Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of polycation. J Biol Chem 276:34379–34387

    Article  Google Scholar 

  • Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner APF (2004) Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens Bioelectron 20:145–152

    Article  Google Scholar 

  • Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5:224–228

    Article  Google Scholar 

  • Ma JS (2003) Unnatural amino acids in drug discovery. Chim Oggi 21:65–68

    Google Scholar 

  • Manetsch R, Krasinski A, Radic Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) J Am Chem Soc 126:12809–12818

    Article  Google Scholar 

  • Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210

    Article  Google Scholar 

  • Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328

    Article  Google Scholar 

  • Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14

    Article  Google Scholar 

  • Mosbach K, Ramstrom O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology 14:165–170

    Google Scholar 

  • Moser R, Thomas RM, Gutte B (1983) An artificial crystalline DDT-binding polypeptide. FEBS Lett 157:247–251

    Article  Google Scholar 

  • Muegge I, Rarey M (2001) Small molecule docking and scoring. Rev Comput Chem 17:1–60

    Article  Google Scholar 

  • Nakamura C, Inuyama Y, Shirai K, Sugimoto N, Miyake J (2001) Detection of porphyrin using a short peptide immobilised on a surface plasmon resonance sensor chip. Biosens Bioelectron 16:1095–1100

    Article  Google Scholar 

  • Nakamura C, Inuyama Y, Goto H, Obataya I, Kaneko N, Nakamura N, Santo N, Miyake J (2005) Dioxin-binding pentapeptide for use in a high-sensitivity on-bead detection assay. Anal Chem 77:7750–7757

    Article  Google Scholar 

  • Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2001) Discovering novel ligands for macro-molecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108

    Article  Google Scholar 

  • Noda K, Yamasaki R, Hironaka Y, Kitagawa A (2001) Selection of peptides that bind to the core oligosaccharide of R-form LPS from a phage-displayed heptapeptide library. FEMS Microbiol Lett 205:349–354

    Article  Google Scholar 

  • O’Neil KT, Hoess RH (1995) Phage display: protein engineering by directed evolution. Curr Opin Struct Biol 4:443–449

    Article  Google Scholar 

  • Otto S, Kubik S (2003) J Am Chem Soc 125:7804–7805

    Article  Google Scholar 

  • Parker C (2008) Development of an affinity sensor for the detection of aflatoxin m1 in milk. PhD thesis, Cranfield University, England, UK

    Google Scholar 

  • Patel S, Stott IP, Bhakoo M, Elliot P (1998) Patenting computer-designed peptides. J Comput Aided Mol Des 12:543–556

    Article  Google Scholar 

  • Payne AWR, Glen RC (1993) Molecular recognition using a binary genetic search algorithm. J Mol Graph 11:74–91

    Article  Google Scholar 

  • Piletsky S, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge C, Turner APF (2001) Recognition of ephedrine enentiomers by molecular imprinted polymers designed using a computational approach. Analyst 126:1826–1830

    Article  Google Scholar 

  • Piletsky S, Piletska EV, Sergeyeva TA, Nicholls I, Weston D, Turner A (2006a) Synthesis of biologically active molecules by imprinting polymerization. Biopolymers Cell 22:63–68

    Google Scholar 

  • Piletsky S, Turner NW, Laitenberger P (2006b) Molecularly imprinted polymers in clinical diagnostics – future potential and existing problems. Med Eng Phys 28:971–977

    Article  Google Scholar 

  • Poulsen S-A, Gates P, Cousins GRL, Sanders JKM (2000) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of dynamic combinatorial libraries. Rapid Commun Mass Spectrom 14:44–48

    Article  Google Scholar 

  • Rachkov A, Minoura NJ (2000) Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A 889:111–118

    Article  Google Scholar 

  • Rich DH (2002) Discovery of nonpeptide, peptidomimetic peptidase inhibitors that target alternate enzyme active site conformations. Biopolymers 66:115–125

    Article  Google Scholar 

  • Richon AB (1994) An introduction to molecular modelling. Mathematech 1:83

    Google Scholar 

  • Roberts SL, Furlan RLE, Otto S, Sanders JKM (2003) Org Biomol Chem 1(9):1625–1633

    Article  Google Scholar 

  • Rustici M, Bracci L, Lozzi L, Neri P, Santucci A, Soldani P, Spreafico A, Niccolai N (1993) A model of the rabies virus glycoprotein active site. Biopolymers 33:961–969

    Article  Google Scholar 

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. J Biotechnol 90:195–229

    Google Scholar 

  • Saur I, Severin K (2005) Chem Commun 11:1471–1473

    Article  Google Scholar 

  • Sawyer TK (1999) Peptidomimetic and nonpeptide drug discovery: chemical nature and biological targets. In: Reid R (ed) Drugs and the pharmaceutical sciences, vol 101. Marcel Dekker, New York, NY, pp 81–114

    Google Scholar 

  • Sawyer TK, Chorev M (2003) Peptide revolution: genomics, proteomics and therapeutics. Biotechiques 34(3):594–596, 598–599

    Google Scholar 

  • Schmuck C (2001) Von der molekularen erkennung zum design neuer wirkstoffe. Chem Unserer Zeit 6:356–366

    Article  Google Scholar 

  • Schneider G, Böhm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70

    Google Scholar 

  • Schneider G, Schuchhardt J, Wrede P (1995) Biol Cybern 73:3

    Article  Google Scholar 

  • Selassie CD (2003) History of quantitative structure-activity relationships. In: Abraham DJ (ed) Burgers medicinal chemistry and drug discovery, vol 1. Wiley, New York, NY, pp 1–48

    Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  Google Scholar 

  • Smith GP (1991) Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2:668–673

    Article  Google Scholar 

  • Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol 217:228–257

    Article  Google Scholar 

  • Steinbach PJ (2005) Introduction to macromolecular simulation. Center for molecular modeling, center for information technology, National Institutes of Health. http://cmm.info.nih.gov/modeling/. Accessed 12, Nov. 2009

  • Steinbach PJ, Brooks BR (1994) Protein simulation below the glass-transition temperature: dependence on cooling protocol. Chem Phys Lett 226:447

    Article  Google Scholar 

  • Subrahmanyam S, Piletsky SA, Piletska EV, Karim K, Chen B, Day R, Turner APF (2001) Bite-and-switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16:631–637

    Article  Google Scholar 

  • Sundaram R, Dakappagari NK, Kaumaya PT (2002) Synthetic peptides as cancer vaccines. Biopolymers 66:200–216

    Article  Google Scholar 

  • Swann PG, Casanova RA, Desai A, Frauenhoff MM, Urbancic M, Slomczynska U, Hopfinger A, Breton GC, Venton D (1997) Nonspecific protease-catalysed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40:617–625

    Article  Google Scholar 

  • Szardenings M (2003) Phage display of random peptide libraries: applications, limits, and potential. J Recept Signal Transduct Res 23:307–349

    Article  Google Scholar 

  • Takeuchi T, Matsui J (1998) Recognition of drugs and herbicides: strategy in selection of functional monomers for noncovalent molecular imprinting. ACS Symp Ser 703:119–134

    Article  Google Scholar 

  • Toko K (2001) Biomimetic sensor technology. Meas Sci Technol 12:221

    Article  Google Scholar 

  • Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agr 30:205–218

    Article  Google Scholar 

  • Tothill IE (2003) On-line immunochemical assays for contaminants analysis. In: Tothill IE (ed) Rapid and on-line instrumentation for food quality assurance. Woodhead, Cambridge, ISBN: 1-85573-674-8

    Google Scholar 

  • Tothill IE, Turner APF (1998) Biosensors: new developments and opportunities in the diagnosis of livestock diseases. Towards livestock disease diagnosis and control in the 21st century. International Atomic Energy Agency, pp 79–94

    Google Scholar 

  • Tothill IE, Piletsky S, Magan N, Turner APF (2001) New biosensors. In: Kress-Rogers E, Brimelow CJB (eds) Instrumentation and sensors for the food industry, 2nd edn. Woodhead and CRC Press LLC, Cambridge, p 836

    Google Scholar 

  • Tozzi C, Anfossi L, Giraudi G, Giovannoli C, Baggiani C, Vanni A (2002) Chromatographic characterisation of an estrogen-binding affinity column containing tetrapeptides selected by a combinatorial-binding approach. J Chromatogr A 966:71–79

    Article  Google Scholar 

  • Tozzi C, Anfossi L, Giovannoli C (2003a) Affinity chromatography techniques based on the immobilisation of peptides exhibiting specific binding activity. J Chromatogr B 797:289–304

    Article  Google Scholar 

  • Tozzi C, Anfossi L, Baggiani C, Giovannoli C, Giraudi G (2003b) A combinatorial approach to obtain affinity media with biding properties towards the aflatoxins. Anal Bioanal Chem 375:994–999

    Google Scholar 

  • Tsai SC (2002) An introduction to computational biochemistry. Wiley, New York, NY

    Book  Google Scholar 

  • Vaidya AA, Lele BS, Kulkami MG, Mashelkar RA (2001) Creating a macromolecular receptor by affinity imprinting. J Appl Polym Sci 81:1075–1083

    Article  Google Scholar 

  • Valero M, Camarero JA, Haack T, Mateu MG, Domingo E, Giralt E, Andreu D (2000) Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J Mol Recognit 13:5–13

    Article  Google Scholar 

  • Vedani A, Dobler M (2002) 5d qsar: the key for simulating induced fit? J Med Chem 45:2139–2149

    Article  Google Scholar 

  • Vedani A, Dobler MQ (2003) Quantification of wide-range ligand binding to the estrogen receptor – a combination of receptor-mediated alignment and 5d QSAR. Helv Chim Acta 45:2139–2149

    Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003a) J Am Chem Soc 125:3192–3193

    Article  Google Scholar 

  • Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003b) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–2000

    Article  Google Scholar 

  • Webster R (2001) Filamentous phage biology. In: Phage Barbas CF, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1.1–1.37

    Google Scholar 

  • Welling GW, Geurts T, van Gorkum J, Damhof RA, Drijfhout J (1990) Synthetic antibody fragment as ligand in immunoaffinity chromatography. J Chromatogr A 512:337–343

    Article  Google Scholar 

  • Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284

    Article  Google Scholar 

  • Yamanoi Y, Sakamoto Y, Kusukawa T, Fujita M, Sakamoto S, Tamaguchi K (2001) J Am Chem Soc 123(5):980–981

    Article  Google Scholar 

  • Yoshizawa M, Nagao M, Umemoto K, Biradha K, Fujita M, Sakamoto S, Yamaguchi K (2003) Chem Commun 15:1808–1809

    Article  Google Scholar 

  • Zameo S, Vauzeilles B, Beau JM (2005) Angew Chem Int Ed 44(6):965–969

    Article  Google Scholar 

  • Zeger ND, Boersma WJA, Claassen E (eds) (1995) Immunological recognition of peptides in medicine and biology. CRC Press, Boca Raton, FL, p 297. ISBN ISBN 0849389674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtisam E. Tothill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tothill, I.E. (2010). Peptides as Molecular Receptors. In: Zourob, M. (eds) Recognition Receptors in Biosensors. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0919-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0919-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0918-3

  • Online ISBN: 978-1-4419-0919-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics