Skip to main content

Impurities and Defects

  • Chapter
  • First Online:
Device Physics of Narrow Gap Semiconductors

Part of the book series: Microdevices ((MDPF))

Abstract

Investigating impurities and defects for any semiconductor material is an important topic. Much research has been devoted to impurity and defect states in wide-gap semiconductor materials. For the pseudobinary semiconductor alloy HgCdTe (mercury cadmium tellurium (MCT)), which is a good material for preparing infrared detectors, the investigation of its defects has a special significance. The behavior of impurities and defects in HgCdTe has been discussed in many papers in recent years. However, the research on impurities and defects of HgCdTe has encountered considerably more complexity and difficulty than that encountered in other semiconductors because of its narrow band gap, the low conduction band effective mass, the ease with which Hg vacancies are formed, and complex with other native point defects and impurities. Despite these difficulties, research in recent years have provided a basic description of impurities and defects, and their diffusion and photoelectric behavior in HgCdTe.

For the narrow gap semiconductor material HgCdTe, we need to know which kind of impurities and defects exist in the material, their chemical composition and electrical activity, if they are p-type or n-type, the magnitude of the impurity concentration, the ionization energies of these defects, their impact on electrical and optical properties, how to experimentally observe their properties, and how to theoretically analyze their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arias JM, Shin SH, Pasko JG, DeWames RE, Gertner ER (1989) Long and middle wavelength infrared photodiodes fabricated with Hg1 − xCdxTe grown by molecular-beam epitaxy. J Appl Phys 65:1747

    Article  CAS  Google Scholar 

  • Baars J, Seelewind H, Fritzsche Ch, Kaiser U, Ziegler J (1988) Arsenic ion implantation in Hg1 − xCdxTe. J Cryst Growth 86:762–767

    Article  CAS  Google Scholar 

  • Bartlett BE, Capper P, Harris JE, Quelch MJT (1980) Factors affecting the electrical characteristics of cadmium mercury telluride crystals. J Cryst Growth 49:600–606

    Article  CAS  Google Scholar 

  • Bartoli FJ, Hoffman CA, Meyer JR (1986) Characterization of impurities in p-type HgCdTe by photo-Hall techniques. J Vac Sci Technol A 4:2047–2050

    Article  CAS  Google Scholar 

  • Beck JD, Kinch MA, Esposito EJ, Chapman RA (1982) The MIS physics of the native oxide–Hg1 − xCdxTe interface. J Vac Sci Technol 21:172–177

    Article  CAS  Google Scholar 

  • Berding MA, Sher A (1998a) Electronic quasichemical formalism: application to arsenic deactivation in silicon. Phys Rev B 58:3853–3864

    Article  CAS  Google Scholar 

  • Berding MA, Sher A (1999a) Arsenic incorporation during MBE growth of HgCdTe. J Electron Mater 28:799–803

    Article  CAS  Google Scholar 

  • Berding MA, Sher A (1999b) Amphoteric behavior of arsenic in HgCdTe. Appl Phys Lett 74: 685–687

    Article  CAS  Google Scholar 

  • Berding MA, van Schilfgaarde M, Sher A (1993) Hg0. 8Cd0. 2Te native defects: densities and dopant properties. J Electron Mater 22:1005–1010

    Article  CAS  Google Scholar 

  • Berding MA, van Schilfgaarde M, Sher A (1994) First-principles calculation of native defect densities in Hg0. 8Cd0. 2Te. Phys Rev B 50:1519–1534

    Article  CAS  Google Scholar 

  • Berding MA, Sher A, van Schilfgaarde M (1995) Defect modeling studies in HgCdTe and CdTe. J Electron Mater 24:1127–1135

    Article  CAS  Google Scholar 

  • Berding MA, Sher A, van Schilfgaarde M (1997) Behavior of p-type dopants in HgCdTe. J Electron Mater 26:625–628

    Article  CAS  Google Scholar 

  • Berding MA, Sher A, van Schlifgaarde M (1998b) Lithium, sodium, and copper in Hg0. 78Cd0. 22Te and CdTe-based substrates. J Electron Mater 27:573–578

    Article  CAS  Google Scholar 

  • Berding MA, Sher A, van Schilfgaarde M, Chen AB, Arias J (1998c) Modeling of arsenic activation in HgCdTe. J Electron Mater 27:605–609

    Article  CAS  Google Scholar 

  • Berglund CN (1966) Surface states at steam-grown silicon-silicon dioxide interfaces. IEEE Trans Electron Devices 13:701–705

    Article  CAS  Google Scholar 

  • Binsma JJM, Giling LJ, Bloem J (1982) Luminescence of CuInS2 I: the broad band emission and its dependence on the defect chemistry. J Lumin 27:35–53

    Article  CAS  Google Scholar 

  • Bowers R, Yafet Y (1959) Magnetic susceptibility of InSb. Phys Rev 115:1165–1172

    Article  CAS  Google Scholar 

  • Brice JC, Capper P (1987) In: Brice JC, Capper P (eds) EMIS datareviews series. INSPEC Inst of Electrical Eng, London

    Google Scholar 

  • Bubulac LO, Tennant WE, Edwall DD, Gertner ER, Robinson JC (1985) Cathodoluminescence of HgCdTe and CdTe on CdTe and sapphire. J Vac Sci Technol A 3:163–170

    Article  CAS  Google Scholar 

  • Bubulac LO, Lo DS, Tennant WE, Edwall DD, Chen JC, Ratusnik J, Robinson JC, Bostrup G (1987) p on n ion-implanted junctions in liquid phase epitaxy HgCdTe layers on CdTe substrates. Appl Phys Lett 50:1586–1588

    Article  CAS  Google Scholar 

  • Bye KL (1979) An X-ray topographic assessment of cadmium mercury telluride. J Mater Sci 14:619–625

    Article  CAS  Google Scholar 

  • Cai Y (1986) An X-ray topographic measurement of Hg1 − xCdxTe defects. Infrared Technol 8: 47–48

    Google Scholar 

  • Cai Y, Zheng GZ, Zhu XC, Jiang JH, Tang DY (1994) Synchrotron radiation topography analysis of multi-element HgCdTe detector linear arrays. J Infrared Millimeter Waves 13:385–390

    Google Scholar 

  • Cai Y, Zheng GZ, Zhu XC, Jiang JH, Tang DY (1995) Synchrotron radiation topography analysis of defects in small CMT slices. Infrared Technol 17:9–13

    Google Scholar 

  • Capper P (1982) The behaviour of selected impurities in CdxHg1 − xTe. J Cryst Growth 57:280–299

    Article  CAS  Google Scholar 

  • Capper P (1989) Bridgman growth of Hg1 − xCdxTe:A review. Prog. Cryst Growth Charact 19:259–293

    Article  CAS  Google Scholar 

  • Capper P (1991) A review of impurity behavior in bulk and epitaxial. J Vac Sci Technol B 9:1667

    Article  CAS  Google Scholar 

  • Capper P, Gosney JJG, Jones CL, Kenworthy I, Roberts JA (1985) Acceptor doping of bridgman-grown CdxHg1 − xTe. J Cryst Growth 71:57–65

    Article  CAS  Google Scholar 

  • Casselman TN (1981) Calculation of the auger lifetime in p-type Hg1 − xCdxTe. J Appl Phys 52:848–584

    Article  CAS  Google Scholar 

  • Casselman TN, Sher A, Silberman J, Spicer WE, Chen AB (1983) On the determination of the energy band offsets in Hg1 − xCdxTe heterojunctions. J Vac Sci Technol 1:1692–1695

    Article  CAS  Google Scholar 

  • Chadi J (1977) Localized-orbital description of wave functions and energy bands in semiconductors. Phys Rev B 16:3572–3578

    Article  CAS  Google Scholar 

  • Chang Y (1995) Ph.D. thesis, Shanghai Institute of Technical Physics

    Google Scholar 

  • Chang Y, Chu JH, Tang WG, Shen WZ, Tang DY (1997) Spectroscopic and electrical investigation on Fe-doped Hg1 − xCdxTe. Chin J Semicond 18:258–263

    CAS  Google Scholar 

  • Chen AB (1977) Simple brillouin-zone scheme for the spectral properties of solids. Phys Rev B 16:3291–3302

    Article  CAS  Google Scholar 

  • Chen AB, Sher A (1980) Electronic structure of III–V semiconductors and alloys using simple orbitals. Phys Rev B 22:3886–3896

    Article  CAS  Google Scholar 

  • Chen AB, Sher A (1981a) Electronic structure of pseudobinary semi-conductor alloys AlxGa1 − xAs, GaPxAs1 − x, and GaxIn1 − xP. Phys Rev B 23:5360–5374

    Article  CAS  Google Scholar 

  • Chen AB, Sher A (1981b) Calculation of the electronic properties of pseudobinary semiconductor alloys. Phys Rev B 23:5645–5648

    Article  CAS  Google Scholar 

  • Chen AB, Sher A (1985) Sensitivity of defect energy levels to host band structures and impurity potentials in CdTe. Phys Rev B 31:6490–6497

    Article  CAS  Google Scholar 

  • Chen MC, Dodge JA (1986) Electrical properties of antimony-doped p-type Hg0. 78Cd0. 22Te liquid-phase-epitaxy films. Solid State Commun 59:449–452

    Article  CAS  Google Scholar 

  • Chen MC, Tregilgas JH (1987) The activation energy of copper shallow acceptors in mercury cadmium telluride. J Appl Phys 61:787–789

    Article  CAS  Google Scholar 

  • Chen W (1990) Master thesis, Shanghai Institute of Technical Physics

    Google Scholar 

  • Chen YP, Zheng GZ, Gong YQ, Guo SL, Chen JX, Tang DY (1990) Composition dependence of hot electron effect in Hg1 − xCdxTe. Semicond Sci Technol 5:S304–306

    Article  CAS  Google Scholar 

  • Cheung DT (1985) An overview on defect studies in MCT. J Vac Sci Technol A 3:128–130

    Article  CAS  Google Scholar 

  • Chu JH (1988) Fachkolloquium “II-VI-Halbleiter”. Jahrestagung der DGKK, Karlsruhe, Marz

    Google Scholar 

  • Chu JH, Xu SC, Tang DY (1983) Energy gap versus alloy composition and temperature in Hg1 − xCdxTe. Appl Phys Lett 43:1064–1066

    Article  CAS  Google Scholar 

  • Chu JH, Mi ZY, Tang DY (1991) Intrinsic absorption spectroscopy and related physical quantities of narrow-gap semiconductors Hg1 − xCdxTe. Infrared Phys 32:195–211

    Article  CAS  Google Scholar 

  • Chu JH, Mi ZY, Sizmann R, Koch F, Wollrab R, Ziegler J, Maier H (1992) Influence of resonant defect states on subband structures in Hg1 − xCdxTe. J Vac Sci Tech B 10:1569–1573

    Article  CAS  Google Scholar 

  • Chu JH, Li B, Liu K, Tang DY (1994) Empirical rule of intrinsic absorption spectroscopy in Hg1 − xCdxTe. J Appl Phys 75:1234–1235

    Article  CAS  Google Scholar 

  • Cole A, Carey GP, Silberman JA, Spicer WE, Wilson JA (1985) Surface and bulk structural defects in Hg1 − xCdxTe. J Vac Sci Technol A 3:206–211

    Article  CAS  Google Scholar 

  • Collins RT, McGill TC (1983) Electronic properties of deep levels in p-type CdTe. J Vac Soc Techol A 1:1633

    Article  CAS  Google Scholar 

  • Cotton VA, Wilson JA (1986) Effects of ion implantation on deep electron traps in Hg0. 7Cd0. 3Te. J Vac Sci Technol A 4:2177–2180

    Article  CAS  Google Scholar 

  • Datsenko LI, Skorokhod M, Kislovski EN et al (1985) Inorg Mater 20:1575

    Google Scholar 

  • Dean BE, Johnson CJ, McDevitt SC, Neugebauer GT, Sepich JL, Dobbyn RC, Kuriyama M, Ellsworth J, Vydyanath HR, Kennedy JJ (1991) Correlation of HgCdTe epilayer defects with underlying substrate defects by synchrotron X-ray topography. J Vac Sci Technol B 9: 1840–1846

    Article  CAS  Google Scholar 

  • Destefanis GL (1985) Indium ion implantation in Hg0. 78Cd0. 22Te ∕ CdTe. J Vac Sci Technol A 3:171–175

    Article  CAS  Google Scholar 

  • Destefanis GL (1988) Electrical doping of HgCdTe by ion implantation and heat treatment. J Cryst Growth 86:700–722

    Article  CAS  Google Scholar 

  • Dornhaus R, Nimtz G (1983) Narrow-gap semiconductors. Springer tracts in modern phys, vol 98. Springer, Heidelberg, p130

    Google Scholar 

  • Dornhaus R, Nimtz G, Schlabitz W, Burkhard H (1975) Resonant level in semiconducting Hg1 − xCdxTe. Solid State Commun 17:837–841

    Article  CAS  Google Scholar 

  • Easton BC, Maxey CD, Whiffin PAC, Roberts JA, Gale IG, Grainger F, Capper P (1991) Impurities and metalorganic chemical-vapor deposition growth of mercury cadmium telluride. J Vac Sci Technol B 9:1682

    Article  CAS  Google Scholar 

  • Elliott CT, Melngailis I, Harman TC, Foyt AG (1972) Carrier freeze-out and acceptor energies in nonstoichiometric p-type HgCdTe. J Phys Chem Solids 33:1527–1531

    Article  CAS  Google Scholar 

  • Farges JP (1990) In: Willardson RK, Beer AC (eds) Semicond and semimetals, vol 31. Academic, New York

    Google Scholar 

  • Fuchs F, Koidl P (1991) Carrier localization in low-bandgap Hg1 − xCdxTe crystals, studied by photoluminescence. Semicond Sci Technol 6:C71–C75

    Article  CAS  Google Scholar 

  • Fuchs F, Lusson A, Wagner J, Koidl P (1989) Double modulation techniques in FTIR photoluminescence. SPIE 1145:323

    Article  CAS  Google Scholar 

  • Gely C, Corbel C, Triboulet R (1990) A study of vacancy-type defects by positron-lifetime measurements in a II–VI semiconductor: Cd0. 2Hg0. 8Te. J Phys: Condens Matter 2:4763–4767

    Article  CAS  Google Scholar 

  • Ghenim L, Robert JL, Bousquet C, Raymond A, Destefanis GL (1985) Evidence, by transport measurements under hydrostatic pressure, of resonant level induced by implantation defects in expitaxial layers of Hg1 − xCdxTe. J Crystal Growth 72:448–452

    Article  CAS  Google Scholar 

  • Glodeanu A (1967) Helium-like impurities in semiconductors. Phys Status Solidi 19:K43–K46

    Article  CAS  Google Scholar 

  • Göbel EO (1982) In: Pearsall TP (ed) InGaAs alloy semiconductors. Wiley, New York, Chapter 13

    Google Scholar 

  • Gold MC, Nelson DA (1986) Variable magnetic field hall effect measurements and analyses of high purity, Hg vacancy (p-type) HgCdTe. J Vac Sci Technol A 4:2040–2046

    Article  CAS  Google Scholar 

  • Goldman VJ, Drew HD, Shayegan M, Nelson DA (1986) Observation of impurity cyclotron resonance in Hg1 − xCdxTe. Phys Rev Lett 56:968–971

    Article  CAS  Google Scholar 

  • Gorshkov AV, Zaitov FA, Shangin SB, Shalyapina GM (1984) Sov Phys Solid State (Engl Transl) 26:1787

    Google Scholar 

  • Gough JS, Houlton MR, Irvine SJC, Shaw N, Young ML, Astles MG (1991) The growth and properties of In-doped metalorganic vapor phase epitaxy interdiffused multilayer process (HgCd)Te. J Vac Sci Technol B 9:1687–1690

    Article  CAS  Google Scholar 

  • Griffiths PR, Haseth JA (1986) Fourier transform infrared spectrometry. Wiley, New York, Chapter 1

    Google Scholar 

  • Harris KA, Myers TH, Yanka RW, Mohnkern LM, Otsuka N (1991) A high quantum efficiency in situ doped mid-wavelength infrared p-on-n homojunction superlattice detector grown by photoassisted molecular-beam epitaxy. J Vac Sci Technol B 9:1752–1758

    Article  CAS  Google Scholar 

  • Hass KC, Ehrenreich E, Velicky B (1983) Electronic structure of Hg1 − xCdxTe. Phys Rev B 27:1088–1100

    Article  CAS  Google Scholar 

  • Herman MA, Pessa M (1985) Hg1 − xCdxTe − Hg1 − yCdyTe (0 ≤ x, y ≤ 1) heterostructures: properties, epitaxy, and applications. J Appl Phys 57:2671

    Article  CAS  Google Scholar 

  • Higgins WM, Pultz GN, Roy RG, Lancaster RA, Schmit JL (1989) Standard relationships in the properties of Hg1 − xCdxTe. J Vac Sci Technol A 7:271–275

    Article  CAS  Google Scholar 

  • Huang H, Tong FM, Tang DY (1988) Infrared Research 7A:89

    CAS  Google Scholar 

  • Hughes WC, Swanson ML, Austin JC (1991) Indium-Hg vacancy interactions in Hg1 − xCdxTe measured by perturbed angular correlation. Appl Phys Lett 59:938

    Article  CAS  Google Scholar 

  • Hughes WC, Austin JC, Swanson ML (1994) The thermodynamics of indium-vacancy pairs in Hg0. 79Cd0. 21Te. J Cryst Growth 138:1040–1045

    Article  CAS  Google Scholar 

  • Hunter AT, McGill TC (1981) Luminescence from HgCdTe alloys. J Appl Phys 52:5779

    Article  CAS  Google Scholar 

  • Hunter AT, McGill TC (1982) Luminescence studies of HgCdTe alloys. J Vac Sci Technol 21: 205–207

    Article  CAS  Google Scholar 

  • Jones CE, Nair V, Polla DL (1981) Generation-recombination centers in p-type Hg1 − xCdxTe. Appl Phys Lett 39:248

    Article  CAS  Google Scholar 

  • Jones CE, Nair V, Lindquist JL, Polla DL (1982) Effects of deep-level defects in Hg1 − xCdxTe provided by DLTS. J Vac Sci Technol 21:187–190

    Article  CAS  Google Scholar 

  • Jones CL, Capper P, Quelch MJT (1983) The properties of gold in Bridgman grown CdxHg1 − xTe. J Cryst Growth 64:417–432

    Article  CAS  Google Scholar 

  • Jones H (1934) Proc Roy Soc A 144:225

    Article  CAS  Google Scholar 

  • Kane EO (1976) Gaussian representations of covalent wave functions; silicon. Phys Rev B 13:3478–3483

    Article  CAS  Google Scholar 

  • Keyes RJ (1977) Optical and infrared detectors. Springer, Berlin

    Google Scholar 

  • Kinch MA, Borrello SR (1975) 0.1 eV HgCdTe photodetectors. Infrared Physics 15:111–124

    Article  CAS  Google Scholar 

  • Kinch MA, Brau MJ, Simmons A (1973) Recombination mechanisms in 8–14-μ HgCdTe. J Appl Phys 44:1649

    Article  CAS  Google Scholar 

  • Klauer S, Wöhlecke M, Kapphan S (1992) Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3. Phys Rev B 45:2786

    Article  CAS  Google Scholar 

  • Kobayashi A, Sankey OF, Dow JD (1982) Chemical trends for defect energy levels in Hg1 − xCdxTe. Phys Rev B 25:6367–6379

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Berding MA, Yu ZG (2006) Minority carrier lifetimes in HgCdTe alloys. J Electron Mater 35:1369–1378

    Article  CAS  Google Scholar 

  • Kurilo IV, Kuchma VI (1982) Twinning in CdTe and CdxHg1 − xTe crystals. Inorg Mater 18:479

    Google Scholar 

  • Kurtz SR, Bajaj J, Edwall DD, Irvine SJC (1993) Infrared photoluminescence characterization of long-wavelength HgCdTe detector materials. Semicond Sci Technol 8:941–945

    Article  CAS  Google Scholar 

  • Lang DV (1974) Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J Appl Phys 45:3023

    Article  CAS  Google Scholar 

  • Lannoo M, Bourgoin J (1981) Point defects in semiconductors I: theoretical aspects. Springer, New York, Chap. 2

    Book  Google Scholar 

  • Li B, Gui YS, Chen ZH, Ye HJ, Chu JH, Wang SL, Ji RB, He L (1998) Study of impurity states in p-type Hg1 − xCdxTe using far-infrared spectroscopy. Appl Phys Lett 73:1538

    Article  CAS  Google Scholar 

  • Liu K, Chu JH, Tang DY (1994) Composition and temperature dependence of the refractive index in Hg1 − xCdxTe. J Appl Phys 75:4176

    Article  CAS  Google Scholar 

  • Lopes VC, Syllaios AJ, Chen MC (1993) Minority carrier lifetime in mercury cadmium telluride. Semicond Sci Technol 8:824–841

    Article  CAS  Google Scholar 

  • Losee DL (1972) Admittance spectroscopy of deep impurity levels: ZnTe Schottky barriers. Appl Phys Lett 21:54

    Article  CAS  Google Scholar 

  • Losee DL (1975) Admittance spectroscopy of impurity levels in Schottky barriers. J Appl Phys 46:2204

    Article  CAS  Google Scholar 

  • Lucovsky G (1965) On the photoionization of deep impurity centers in semiconductors. Solid State Commun 3:299–302

    Article  CAS  Google Scholar 

  • Lusson A, Fuchs F, Marfaing Y (1990) Systematic photoluminescence study of CdxHg1 − xTe alloys in a wide composition range. J Crystal Growth 101:673–677

    Article  CAS  Google Scholar 

  • Maxey CD, Whiffin PAC, Easton BC (1991) MOVPE growth and characterization of doped CdxHg1 − xTe structures. Semicond Sci Technol 6:c26–c30

    Article  CAS  Google Scholar 

  • Maxey CD, Gale LG, Clegg JB, Whiffin PAC (1993) Doping studies in MOVPE-grown CdxHg1 − xTe. Semicond Sci Technol 8:s183–s196

    Article  CAS  Google Scholar 

  • Mirsky U, Shechtman D (1980) Transmission electron microscopy and X-ray topography study of mercury-cadmium-telluride. J Electron Mater 9:933–943

    Article  CAS  Google Scholar 

  • Mosser V, Sizmann R, Koch F, Ziegler J, Maier H (1988) Quantum physics of the surface layer capacitance for narrow-gap HgCdTe. Semicond Sci Technol 3:808–812

    Article  CAS  Google Scholar 

  • Mott N, Jones H (1936) The theory of the properties of metals and alloys. Clarendon, Oxford

    Google Scholar 

  • Murakami S, Okamoto T, Maruyama K, Takiqawa H (1993) Iodine doping in mercury cadmium telluride (Hg1 − xCdxTe) grown by direct alloy growth using metalorganic chemical vapor deposition. Appl Phys Lett 63:899

    Article  CAS  Google Scholar 

  • Myles CW (1987) The 1987 US workshop on the Physics and Chemistry of HgCdTe. New Orleans, LA, PO/DI-31

    Google Scholar 

  • Nicollian EH, Brews TR (1982) MOS physics and technology. Wiley, New York

    Google Scholar 

  • Petersen PE (1970) Auger recombination in Hg1 − xCdxTe. J Appl Phys 41:3465

    Article  CAS  Google Scholar 

  • Petersen PE (1983) In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 18. Academic, New York, chap. 6

    Google Scholar 

  • Petrov VI, Gareeva AR (1988) Bull Acad Sci USSR Phys Ser (USA) 52:110

    Google Scholar 

  • Polla DL, Jones CE (1980a) Admittance spectroscopy of deep levels in Hg1 − xCdxTe. J Appl Phys 51:6233

    Article  CAS  Google Scholar 

  • Polla DL, Jones CE (1980b) Deep level transient spectroscopy in Hg1 − xCdxTe. Solid State Commun 36:809

    Article  CAS  Google Scholar 

  • Polla DL, Jones CE (1981) Deep level studies of Hg1 − xCdxTe. I: narrow-band-gap space-charge spectroscopy. J Appl Phys 52:5118

    CAS  Google Scholar 

  • Polla DL, Aggarwal RL, Mroczkowski JA, Shanley JF, Reine MB (1982) Observation of deep levels in Hg1 − xCdxTe with optical modulation spectroscopy. Appl Phys Lett 40:338

    Article  CAS  Google Scholar 

  • Pratt RG, Hewett J, Capper P, Jones CL, Quelch MJ (1983) Minority carrier lifetime in n-type Bridgman grown Hg1 − xCdxTe. J Appl Phys 54:5152

    Article  CAS  Google Scholar 

  • Pratt RG, Hewett J, Capper P (1986) Minority-carrier lifetime in doped and undoped n-type CdxHg1 − xTe. J Appl Phys 60:2377

    Article  CAS  Google Scholar 

  • Reisinger AR, Roberts RN, Chinn SR, Myersll TH (1989) Photoluminescence of infrared-sensing materials using an FTIR spectrometer. Rev Sci Instrum 60:82

    Article  CAS  Google Scholar 

  • Rosback JP, Harper ME (1987) Doping and composition profiling in Hg1 − xCdxTe by the graded capacitance–voltage method. J Appl Phys 62:1717

    Article  Google Scholar 

  • Rosemeier RG (1983) Real-time X-ray topography: applications to bulk HgCdTe materials. J Vac Sci Technol A 1:1656–1660

    Article  CAS  Google Scholar 

  • Ryssel H, Lang G, Biersack JP, Muller K, Kruger W (1980) Ion implantation doping of Cd0. 2Hg0. 8Te for infrared detectors. IEEE Trans Electron Devices 27:58–62

    Article  Google Scholar 

  • Sasaki T, Oda N, Kawano M, Sone S, Kanno K, Saga M (1992) Mercury annealing effect on the electrical properties of HgCdTe grown by molecular beam epitaxy. J Cryst Growth 117: 222–226

    Article  CAS  Google Scholar 

  • Schaake HF (1986) Ion implantation damage in Hg0. 8Cd0. 2Te. J Vac Sci Technol A 4:2174–2176

    Article  CAS  Google Scholar 

  • Schaake HF (1988) Proc SPIT-Int Soc Opt Eng (USA) 946:186

    Google Scholar 

  • Schacham SE, Finkman E (1985) Recombination mechanisms in p-type HgCdTe: freezeout and background flux effects. J Appl Phys 57:2001

    Article  CAS  Google Scholar 

  • Schmidt T, Lischka K, Zulehner W (1992a) Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B 45:8989–8994

    Article  Google Scholar 

  • Schmidt T, Daniel G, Lischka K (1992b) The excitation power dependence of the near band edge photoluminescence of II–VI semiconductors. J Cryst Growth 117:748–752

    Article  CAS  Google Scholar 

  • Schmit JL, Stelzer EL (1969) Temperature and alloy compositional dependences of the energy gap of Hg1 − xCdxTe. J Appl Phys 40:4865

    Article  CAS  Google Scholar 

  • Scott W, Stelzer EL, Hager RJ (1976) Electrical and far-infrared optical properties of p-type Hg1 − xCdxTe. J Appl Phys 47:1408

    Article  CAS  Google Scholar 

  • Seeger K (1985) Semiconductor physics: an introduction. Springer, Berlin

    Google Scholar 

  • Shao J, Lu W, Lü X, Yue FY, Li ZF, Guo SL, Chu JH (2006) Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer. Rev Sci Instrum 77:063104

    Article  CAS  Google Scholar 

  • Shen J, Chen JZ, Chen YQ (1980) Infrared Phys Technol 1:1

    Google Scholar 

  • Shen XC (1992) Optical properties of semiconductor. Science, Beijing

    Google Scholar 

  • Shen XC (1994) Prog Phys (Chinese) 4:452

    Google Scholar 

  • Sher A, Hoffman HJ, Su P, Tsuo YH (1983) Techniques for improving the Si–SiO2 interface characterization. J Appl Phys 54:5183

    Article  CAS  Google Scholar 

  • Shin SH, Chu M, Vanderwyck AHB, Lanir M, Wang CC (1980) Electrical properties of as-grown Hg1 − xCdxTe epitaxial layers. J Appl Phys 51:3772

    Article  CAS  Google Scholar 

  • Shin SH, Arias JM, Edwell DD et al (1991) Proc 1991 US workshop on chemistry of MCT and II–VI compounds 69

    Google Scholar 

  • Shin SH, Arias JM, Zandian M, Pasko JG, Bubulac LO, DeWames RE (1993) Annealing effect on the P-type carrier concentration in low-temperature processed arsenic-doped HgCdTe. J Electron Mater 22:1039–1047

    Article  CAS  Google Scholar 

  • Sladek RJ (1958) Magnetoresistance oscillations in single-crystal and polycrystalline indium arsenide. Phys Rev 110:817–826

    Article  CAS  Google Scholar 

  • Stahle CM, Helms CR, Simmons A (1987) Thermal stability of the anodic oxide/Hg1 − xCdxTe interface. J Vac Sci Technol B 5:1092–1096

    Article  CAS  Google Scholar 

  • Swarts CA, Daw MS, McGill TC (1982) Bulk vacancies in CdxHg1 − xTe. J Vac Sci Technol 21:198

    Article  CAS  Google Scholar 

  • Swink LW, Brau MJ (1970) Rapid, nondestructive evaluation of macroscopic defects in crystalline materials: the laue topography of (Hg, Cd) Te. Metall Mater Trans B 1: 629–634

    Article  CAS  Google Scholar 

  • Sze SM (1969) Physics of semiconducting devices. Wiley, New York, p 429

    Google Scholar 

  • Tang DY (1974) Infrared Phys Technol 16:345

    Google Scholar 

  • Tang DY (1976) Infrared Phys Technol 25–26:53

    Google Scholar 

  • Tang WG, Chang Y, Shen WZ (1995) Basic applications studies of HgCdTe materials and devices, 1995 collections of the theses. Shanghai Institute of Technical Physics, Shanghai, p 108

    Google Scholar 

  • Tomm JW, Herrmann KH, Yunovich AE (1990) Infrared photoluminescence in narrow-gap semiconductors. Phys Stat Sol A 122:11–42

    Article  CAS  Google Scholar 

  • Tomm JW, Herrmann KH, Hoerstel W, Lindstaedt M, Kissel H, Fuchs F (1994) On the nature of the excitonic luminescence in narrow-gap Hg1 − xCdxTe (x≅0. 3). J Cryst Growth 138:175–181

    Article  CAS  Google Scholar 

  • Tsau GH, Sher A, Madou M, Wilson JA, Cotton VA, Jones CE (1986) Low-frequency admittance measurements on the HgCdTe/Photox SiO2 interface. J Appl Phys 59:1238

    Article  CAS  Google Scholar 

  • Vodop’yanov LK, Kozyrev SP, Spitsyn AV (1982a) Ion implantation of impurities in n-type Hg0. 8Cd0. 2Te. I Group II ions Mg + , Zn + , Cd + . Sov Phys Semicond (USA) 16:502–506

    Google Scholar 

  • Vodop’yanov LK, Kozyrev SP, Spitsyn AV (1982b) Ion implantation of impurities in n-type Hg0. 8Cd0. 2Te. II. group III ions Al +  and Ga + . Sov Phys Semicond (USA) 16:626–629

    Google Scholar 

  • Vydyanath HR (1990) Amphoteric behaviour of group V dopants in (Hg, Cd)Te. Semicond Sci Technol 5:S213–S216

    Article  CAS  Google Scholar 

  • Vydyanath HR (1991) Mechanisms of incorporation of donor and acceptor dopants in (Hg, Cd)Te alloys. J Vac Sci Technol B 9:1716

    Article  CAS  Google Scholar 

  • Vydyanath HR, Kröger FA (1982) Doping behavior of iodine in Hg0. 8Cd0. 2Te + . J Electron Mater 11:111–131

    Article  CAS  Google Scholar 

  • Vydyanath HR, Donovan JC, Nelson DA (1981) Lattice defects in semiconducting Hg1 − xCdxTe Alloys III–defect structure of undoped Hg0. 6Cd0. 4Te. J Electrochem Soc 128:2625–2629

    Article  CAS  Google Scholar 

  • Wang J (1989) PhD thesis. Shanghai Institute of Technical Physics

    Google Scholar 

  • Wang SW, Tang DY, Tong FM (1991) Research and progress in semiconductor devices II. Science, Beijing

    Google Scholar 

  • Wang Y, Cai Y, He YC et al (1992) Infrared Technol 14:1

    Google Scholar 

  • Wang ZX, Wei XJ, Lai DS et al (1984) Laser & Infrared 1:53

    Google Scholar 

  • Willardson RK, Beer AC (1981) mercury cadmium telluride. Semiconductors and semimetals, vol 18. Academic, New York

    Google Scholar 

  • Yang JR (1988) PhD thesis. Shanghai Institute of Technical Physics

    Google Scholar 

  • Ye RQ (1995) Basic applications studies of HgCdTe materials and devices, 1995 collections of the theses. Shanghai Institute of Technical Physics, Shanghai, p 165

    Google Scholar 

  • Yoshikawa M, Ueda S, Maruyama K, Takigawa H (1985) The behavior of oxygen in HgCdTe. J Vac Sci Technol A 3:153–155

    Article  CAS  Google Scholar 

  • Yu F, Xu S, Zhang S (1990) Infrared Phys 30:61

    Article  CAS  Google Scholar 

  • Yu FJ (1976) Infrared Phys Technol 25–26:30

    Google Scholar 

  • Yu PW (1977) Excitation-dependent emission in Mg-, Be-, Cd-, and Zn-implanted GaAs. J Appl Phys 48:5043

    Article  CAS  Google Scholar 

  • Yuan HX, Tong FM, Tang DY (1990) Analysis of reverse leakage current mechanisms in Hg1 − xCdxTe photodiodes. Chin J Infrared Res 9:415–424

    CAS  Google Scholar 

  • Zanio K (1978) In: Willardson RK, Beer AC (eds) Semicond and semimetals, vol 13. Academic, New York

    Google Scholar 

  • Zheng GZ, Wei YY, Shen JX et al (1994) J Infrared Millimeter Waves 13:347

    CAS  Google Scholar 

  • Ziep O, Genzow D, Mocker M, Herrmann KH (1980) Phys Stat Sol B 99:129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Chu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Chu, J., Sher, A. (2010). Impurities and Defects. In: Device Physics of Narrow Gap Semiconductors. Microdevices. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1040-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1040-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1039-4

  • Online ISBN: 978-1-4419-1040-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics