Skip to main content

Communication Between EphrinB2 and EphB4 Within the Osteoblast Lineage

  • Conference paper
  • First Online:
Osteoimmunology

Abstract

Members of the ephrin and Eph family are local mediators of cell function through largely contact-dependent processes in development and in maturity. Production of ephrinB2 mRNA and protein are increased by PTH and PTHrP in osteoblasts. Both a synthetic peptide antagonist of ephrinB2/EphB4 receptor interaction and recombinant soluble extracellular domain of EphB4 (sEphB4), which is an antagonist of both forward and reverse EphB4 signaling, were able to inhibit mineralization and the expression of several osteoblast genes involved late in osteoblast differentiation. The findings are consistent with ephrinB2/EphB4 signaling within the osteoblast lineage having a paracrine role in osteoblast differentiation, in addition to the proposed role of osteoclast-derived ephrinB2 in coupling of bone formation to resorption. This local regulation might contribute to control of osteoblast differentiation and bone formation at remodeling sites, and perhaps also in modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan, E.H., Hausler, K.D., Wei, T., Gooi, J.H., Quinn, J.M., Crimeen-Irwin, B., Pompolo, S., Sims, N.A., Gillespie, M.T, Onyia, J.E., & Martin, T.J. (2008). EphrinB2 Regulation by Parathyroid Hormone (PTH) and PTHrP Revealed by Molecular Profiling in Differentiating Osteoblasts. J Bone Miner Res, 23(8), 1170–1181.

    Article  CAS  PubMed  Google Scholar 

  2. Bonewald, L.F. (2007). Osteocyte messages from a bony tomb. Cell Metab, 5(6), 410–411.

    Article  CAS  PubMed  Google Scholar 

  3. Centrella, M., McCarthy, T.L., & Canalis, E. (1991). Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am, 73(9), 1418–1428.

    CAS  PubMed  Google Scholar 

  4. Civitelli, R. (2008). Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys, 473(2), 188–192.

    Article  CAS  PubMed  Google Scholar 

  5. Compagni, A., Logan, M., Klein, R., & Adams, R.H. (2003). Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell, 5(2), 217–230.

    Article  CAS  PubMed  Google Scholar 

  6. Everts, V., Delaisse, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., & Beertsen, W. (2002). The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res, 17(1), 77–90.

    Article  CAS  PubMed  Google Scholar 

  7. Gray, C., Boyde, A., & Jones, S.J. (1996). Topographically induced bone formation in vitro: implications for bone implants and bone grafts. Bone, 18(2), 115–123.

    Article  CAS  PubMed  Google Scholar 

  8. Hamada, K., Oike, Y., Ito, Y., Maekawa, H., Miyata, K., Shimomura, T., & Suda, T. (2003). Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 23(2), 190–197.

    Article  CAS  PubMed  Google Scholar 

  9. Himanen, J.P., Chumley, M.J., Lackmann, M., Li, C., Barton, W.A., Jeffrey, P.D., Vearing, C., Geleick, D., Feldheim, D.A., Boyd, A.W., Henkemeyer, M., & Nikolov, D.B. (2004). Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci, 7(5):501–509.

    Article  CAS  PubMed  Google Scholar 

  10. Himanen, J.P., & Nikolov, D.B. (2003). Eph receptors and ephrins. Int J Biochem Cell Biol, 35(2), 130–134.

    Article  CAS  PubMed  Google Scholar 

  11. Holmberg, J., Armulik, A., Senti, K.A., Edoff, K., Spalding, K., Momma, S., Cassidy, R., Flanagan, J.G., & Frisen, J. (2005). Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev, 19(4), 462–471.

    Article  CAS  PubMed  Google Scholar 

  12. Kertesz, N., Krasnoperov, V., Reddy, R., Leshanski, L., Kumar, S.R., Zozulya, S., & Gill, P.S. (2006). The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood, 107(6), 2330–2338.

    Article  CAS  PubMed  Google Scholar 

  13. Koolpe, M., Burgess, R., Dail, M., & Pasquale, E.B. (2005). EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem, 280(17), 17301–17311.

    Article  CAS  PubMed  Google Scholar 

  14. Lips, P., Courpron, P., & Meunier, P.J. (1978). Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res, 26(1), 13–17.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Q, Sun E.E., Klein R.S., Flanagan J.G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell, 105(1), 69–79.

    Article  CAS  PubMed  Google Scholar 

  16. Miao, D., He, B., Jiang, Y., Kobayashi, T., Soroceanu, M.A., Zhao, J., Su, H., Tong, X., Amizuka, N., Gupta, A., Genant, H.K., Kronenberg, H.M., Goltzman, D., & Karaplis, A.C. (2005). Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest, 115(9), 2402–2411.

    Article  CAS  PubMed  Google Scholar 

  17. Mohan, S., & Baylink, D.J. (1991). Bone growth factors. Clin Orthop Relat Res, 263, 30–48.

    PubMed  Google Scholar 

  18. Murai, K.K., & Pasquale, E.B. (2003). 'Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci, 116(Pt 14), 2823–2832.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura, M., Udagawa, N., Matsuura, S., Mogi, M., Nakamura, H., Horiuchi, H., Saito, N., Hiraoka, B.Y., Kobayashi, Y., Takaoka, K., Ozawa, H., Miyazawa, H., & Takahashi, N. (2003). Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology, 144(12), 5441–5449.

    Article  CAS  PubMed  Google Scholar 

  20. Noble, B.S., Peet, N., Stevens, H.Y., Brabbs, A., Mosley, J.R., Reilly, G.C., Reeve, J., Skerry, T.M., & Lanyon, L.E. (2003). Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol, 284(4), C934–C943.

    CAS  PubMed  Google Scholar 

  21. Oreffo, R.O., Mundy, G.R., Seyedin, S.M., & Bonewald, L.F. (1989). Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun, 158(3), 817–823.

    Article  CAS  PubMed  Google Scholar 

  22. Parfitt, A.M. (1996). Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds.) Osteoporosis. Academic Press, San Diego, CA, pp. 315–339.

    Google Scholar 

  23. Parfitt, A.M. (2002). Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone, 30(1), 5–7.

    Article  CAS  PubMed  Google Scholar 

  24. Pasquale, E.B. (2005). Eph receptor signaling [stet] casts a wide net on cell behaviour. Nat Rev Mol Cell Biol, 66, 462–475.

    Article  Google Scholar 

  25. Robling, A.G., Bellido, T., & Turner, C.H. (2006). Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact, 6(4), 354.

    CAS  PubMed  Google Scholar 

  26. Sims, N.A., Jenkins, B.J., Quinn, J.M., Nakamura, A., Glatt, M., Gillespie, M.T., Ernst, M., & Martin, T.J. (2004). Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest, 113(3), 379–389.

    CAS  PubMed  Google Scholar 

  27. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., & Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 20(3), 345–357.

    Article  CAS  PubMed  Google Scholar 

  28. van Bezooijen, R.L., ten Dijke, P., Papapoulos, S.E., & Lowik, C.W. (2005). SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev, 16(3), 319–327.

    Article  PubMed  Google Scholar 

  29. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242–248.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K. (2006). Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 4(2), 111–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.J. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Martin, T. et al. (2009). Communication Between EphrinB2 and EphB4 Within the Osteoblast Lineage. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 658. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1050-9_6

Download citation

Publish with us

Policies and ethics