Skip to main content

Solid Nanosuspensions: The Emerging Technology and Pharmaceutical Applications as Nanomedicine

  • Chapter
  • First Online:
Pharmaceutical Suspensions

Abstract

One of the foremost reasons for such a widespread interest in nanosuspensions as drug delivery systems is their ability to provide formulations of poorly soluble drugs with increased saturation solubility and higher dissolution rates. Nanosuspensions manifest these properties because of their small size and high surface area. The unique properties of the nanosuspensions along with their fast development times, low production costs, ease of manufacture and scale-up as well as their ability to extend the lifecycle of off-patent drugs have resulted in rapid commercialization. Nanosuspensions provide us with a useful tool for formulating an ever-increasing number of poorly water soluble drugs in pharmaceutical development programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, A. W. (1997). Physical chemistry of surfaces. New York, Wiley

    Google Scholar 

  • Allison, S. D. (2007). “Liposomal drug delivery.” Journal of Infusion Nursing 30(2): 89–95.

    Article  PubMed  Google Scholar 

  • Arriagada, F. J. and K. Osseoasare (1995). “Synthesis of nanosize silica in aerosol of reverse microemulsions.” Journal of Colloid and Interface Science 170(1): 8–17.

    Article  CAS  Google Scholar 

  • Barth, H. G. and R. B. Flippen (1995). “Particle-size analysis.” Analytical Chemistry 67(12): R257–R272.

    Article  CAS  Google Scholar 

  • Bhardwaj, V., S. Hariharan, et al. (2005). “Pharmaceutical aspects of polymeric nanoparticles for oral drug delivery.” Journal of Biomedical Nanotechnology 1: 235–258.

    Article  CAS  Google Scholar 

  • Bijlani, V., D. Yuonayel, et al. (2007). “Monitoring ibuprofen release from multiparticulates: in situ fiber-optic technique versus the HPLC method: a technical note.” AAPS PharmSciTech 8(3).

    Google Scholar 

  • Bisrat, M. and C. Nystrom (1988). “Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions.” International Journal of Pharmaceutics 47(1–3): 223–231

    Article  CAS  Google Scholar 

  • Borm, P., F. C. Klaessig, et al. (2006). “Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles.” Toxicological Sciences 90(1): 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, D. J. (2005). Injectable dispersed systems. Boca Raton, Taylor & Francis Group

    Google Scholar 

  • Burgess, D. J., E. Duffy, et al. (2004). “Particle size analysis: AAPS workshop report, cosponsored by the food and drug administration and the united states pharmacopeia.” AAPS Journal 6(3).

    Google Scholar 

  • Caruthers, S. D., S. A. Wickline, et al. (2007). “Nanotechnological applications in medicine.” Current Opinion in Biotechnology 18(1): 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Cherng-ju, K. (2004). Advanced pharmaceutics: physicochemical principles. Boca Raton, CRC Press LLC

    Google Scholar 

  • Chhabra, V., V. Pillai, et al. (1995). “Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles.” Langmuir 11(9): 3307–3311.

    Article  CAS  Google Scholar 

  • Chow, A. H. L., H. H. Y. Tong, et al. (2007). “Particle engineering for pulmonary drug delivery.” Pharmaceutical Research 24(3): 411–437.

    Article  PubMed  CAS  Google Scholar 

  • Connors, R. D. and E. J. Elder (2004). “Using a portfolio of particle growth technologies to enable delivery of drugs with poor water solubility.” Drug Delivery Technology 4(8): 78–83.

    CAS  Google Scholar 

  • Crisp, M. T., C. J. Tucker, et al. (2007). “Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals.” Journal of Controlled Release 117(3): 351–359.

    Article  PubMed  CAS  Google Scholar 

  • Dalwadi, G., H. A. E. Benson, et al. (2005). “Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions.” Pharmaceutical Research 22(12): 2152–2162.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M. P., V. Labhasetwar, et al. (1996). “Gastrointestinal uptake of biodegradable microparticles: effect of particle size.” Pharmaceutical Research 13(12): 1838–1845.

    Article  PubMed  CAS  Google Scholar 

  • Devine, D. V., K. Wong, et al. (1994). “Liposome-complement interactions in rat serum – implications for liposome survival studies.” Biochimica et Biophysica Acta-Biomembranes 1191(1): 43–51.

    Article  CAS  Google Scholar 

  • Dou, H., J. Morehead, et al. (2007). “Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages.” Virology 358(1): 148–158.

    Article  PubMed  CAS  Google Scholar 

  • El-Shabouri, M. H. (2002). “Nanoparticles for improving the dissolution and oral bioavailability of spironolactone, a poorly-soluble drug.” STP Pharma Sciences 12(2): 97–101.

    CAS  Google Scholar 

  • Farokhzad, O. C. and R. Langer (2006). “Nanomedicine: developing smarter therapeutic and diagnostic modalities.” Advanced Drug Delivery Reviews 58(14): 1456–1459.

    Article  PubMed  CAS  Google Scholar 

  • Frantzen, C. B., L. Ingebrigtsen, et al. (2003). “Assessing the accuracy of routine photon correlation spectroscopy analysis of heterogeneous size distributions.” AAPS PharmSciTech 4(3): E36

    Article  PubMed  Google Scholar 

  • Gassmann, P., M. List, et al. (1994). “Hydrosols – alternatives for the parenteral application of poorly water soluble drugs.” European Journal of Pharmaceutics and Biopharmaceutics 40(2): 64–72.

    CAS  Google Scholar 

  • Grau, M. J., O. Kayser, et al. (2000). “Nanosuspensions of poorly soluble drugs - reproducibility of small scale production.” International Journal of Pharmaceutics 196(2): 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. R., G. M. Manikhas, et al. (2006). “Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer.” Annals of Oncology 17(8): 1263–1268.

    Article  PubMed  CAS  Google Scholar 

  • Gruverman, I. J. (2003). “Breakthrough ultraturbulent reaction technology opens frontier for developing life-saving nanometer-scale suspensions & dispersions.” Drug Delivery Technology 3(1): 52.

    Google Scholar 

  • Harries, M., P. Ellis, et al. (2005). “Nanoparticle albumin-bound paclitaxel for metastatic breast cancer.” Journal of Clinical Oncology 23(31): 7768–7771.

    Article  PubMed  CAS  Google Scholar 

  • Haskell, R. J. (1998). “Characterization of submicron systems via optical methods.” Journal of Pharmaceutical Sciences 87(2): 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Hecq, J., M. Deleers, et al. (2005). “Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine.” International Journal of Pharmaceutics 299(1–2): 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Hecq, J., M. Deleers, et al. (2006). “Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base.” European Journal of Pharmaceutics and Biopharmaceutics 64(3): 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Hiemenz, P. C. and R. Rajagopalan (1997). Principles of colloid and surface chemistry. New York, Marcel Dekker Inc

    Google Scholar 

  • Hintz, R. J. and K. C. Johnson (1989). “The effect of particle size distribution on dissolution rate and oral absorption.” International Journal of Pharmaceutics 51(1): 9–17.

    Article  CAS  Google Scholar 

  • Hirai, T., S. Hariguchi, et al. (1997). “Biomimetic synthesis of calcium carbonate particles in a pseudovesicular double emulsion.” Langmuir 13(25): 6650–6653.

    Article  CAS  Google Scholar 

  • Hooton, J. C., C. S. German, et al. (2004). “An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles.” Pharmaceutical Research 21(6): 953–961.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J. H., T. L. Rogers, et al. (2002). “Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology.” Pharmaceutical Research 19(9): 1278–1284.

    Article  PubMed  CAS  Google Scholar 

  • Hui, H. W. and J. R. Robinson (1986). “Effect of particle dissolution rate on ocular drug bioavailability.” Journal of Pharmaceutical Sciences 75(3): 280–287.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, C., O. Kayser, et al. (2001). “Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone.” International Journal of Pharmaceutics 214(1–2): 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, C. and R. H. Muller (2002). “Production and characterization of a budesonide nanosuspension for pulmonary administration.” Pharmaceutical Research 19(2): 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Jarvinen, K., T. Jarvinen, et al. (1995). “Ocular absorption following topical delivery.” Advanced Drug Delivery Reviews 16(1): 3–19.

    Article  Google Scholar 

  • Jia, L., H. Wong, et al. (2002). “Effect of nanonization on absorption of 301029: Ex vivo and in vivo pharmacokinetic correlations determined by liquid chromatography/mass spectrometry.” Pharmaceutical Research 19(8): 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  • Jinno, J., N. Kamada, et al. (2006). “Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs.” Journal of Controlled Release 111(1–2): 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Juliano, R. L. and D. Stamp (1975). “The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs.” Biochemical and Biophysical Research Communications 63(3): 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J. and M. Perrut (2001). “Particle design using supercritical fluids: Literature and patent survey.” Journal of Supercritical Fluids 20(3): 179–219.

    Google Scholar 

  • Kassem, M. A., A. A. Abdel Rahman, et al. (2007). “Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs.” International Journal of Pharmaceutics 340(1–2): 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, O. (2000). “Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages.” International Journal of Pharmaceutics 196(2): 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, O. (2001). “A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications.” International Journal of Pharmaceutics 214(1–2): 83–85.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, O., C. Olbrich, et al. (2003). “Formulation of amphotericin B as nanosuspension for oral administration.” International Journal of Pharmaceutics 254(1): 73–75.

    Article  PubMed  CAS  Google Scholar 

  • Keck, C. M. and R. H. Muller (2006). “Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.” European Journal of Pharmaceutics and Biopharmaceutics 62(1): 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Kesisoglou, F., S. Panmai, et al. (2007). “Application of nanoparticles in oral delivery of immediate release formulations.” Current Nanoscience 3(2): 183–190.

    Article  CAS  Google Scholar 

  • Kipp, J. E. (2004). “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs.” International Journal of Pharmaceutics 284(1–2): 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Kocbek, P., S. Baumgartner, et al. (2006). “Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs.” International Journal of Pharmaceutics 312(1–2): 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, N., T. Iwao, et al. (1993a). “Pharmacokinetics of a micronized, poorly water-soluble drug, HO-221, in experimental animals.” Biological and Pharmaceutical Bulletin 16(8): 796–800.

    PubMed  CAS  Google Scholar 

  • Kondo, N., T. Iwao, et al. (1993b). “Improved oral absorption of a poorly water-soluble drug, HO-221, by wet-bead milling producing particles in submicron region.” Chemical and Pharmaceutical Bulletin 41(4): 737–740.

    CAS  Google Scholar 

  • Lamprecht, A., U. Schäfer, et al. (2001). “Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa.” Pharmaceutical Research 18(6): 788–793.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., S. J. Lee, et al. (2005). “Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion.” European Journal of Pharmaceutical Sciences 24(5): 441–449.

    Google Scholar 

  • List, M. and H. Sucker (1995). “Hydrosols of pharmacologically active agents and their pharmaceutical compositions comprising them.” US Patent 5389382.

    Google Scholar 

  • List, M. L. and H. B. Sucker (1988). “Pharmaceutical colloidal hydrosols for injection.” GB Patent 2200048.

    Google Scholar 

  • Liversidge, G. C., K. C. Cundy, et al. (1991). “Surface modified drug nanoparticles.” US Patent 5145684.

    Google Scholar 

  • Liversidge, G. G. and P. Conzentino (1995). “Drug particle-size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats.” International Journal of Pharmaceutics 125(2): 309–313.

    Article  CAS  Google Scholar 

  • Liversidge, G. G. and K. C. Cundy (1995). “Particle-size reduction for improvement of oral bioavailability of hydrophobic drugs.1. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs.” International Journal of Pharmaceutics 125(1): 91–97.

    Google Scholar 

  • Martin, A. (2001). Physical pharmacy. Philadelphia, Lippincott Williams & Wilkins.

    Google Scholar 

  • Mehnert, W. and K. Mader (2001). “Solid lipid nanoparticles: production, characterization and applications.” Advanced Drug Delivery Reviews 47(2–3): 165–196.

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge, E., G. G. Liversidge, et al. (2003). “Nanosizing: a formulation approach for poorly-water-soluble compounds.” European Journal of Pharmaceutical Sciences 18(2): 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Mori, Y., Y. Okastu, et al. (2001). “Titanium dioxide nanoparticles produced in water-in-oil emulsion.” Journal of Nanoparticle Research 3(2): 219–225.

    Article  CAS  Google Scholar 

  • Moschwitzer, J., G. Achleitner, et al. (2004). “Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology.” European Journal of Pharmaceutics and Biopharmaceutics 58(3): 615–619.

    Article  PubMed  CAS  Google Scholar 

  • Müller, R. H., R. Becker, et al. (1996). “Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and speed of dissolution.” US Patent 5858410.

    Google Scholar 

  • Muller, R. H. and C. Jacobs (2002). “Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability.” International Journal of Pharmaceutics 237(1–2): 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Muller, R. H., C. Jacobs, et al. (2001). “Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future.” Advanced Drug Delivery Reviews 47(1): 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Muller, R. H., K. Krause, et al. (2002). “Method for controlled production of ultrafine microparticles and nanoparticles. EP Patent 1194123 (A2).

    Google Scholar 

  • Ostrander, K. D., H. W. Bosch, et al. (1999). “An in-vitro assessment of a NanoCrystal (TM) beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization.” European Journal of Pharmaceutics and Biopharmaceutics 48(3): 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Owens Iii, D. E. and N. A. Peppas (2006). “Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.” International Journal of Pharmaceutics 307(1): 93–102.

    Article  CAS  Google Scholar 

  • Pace, S. N., G. W. Pace, et al. (1999). “Novel injectable formulations of insoluble drugs.” Pharmaceutical Technology 23(3): 116–134.

    CAS  Google Scholar 

  • Park, H. J., M. S. Kim, et al. (2007). “Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.” International Journal of Pharmaceutics 328(2): 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Pathak, P., M. J. Meziam, et al. (2006). “Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing.” Journal of Supercritical Fluids 37(3): 279–286.

    Article  CAS  Google Scholar 

  • Pathak, P., M. J. Meziani, et al. (2007). “Supercritical fluid processing of drug nanoparticles in stable suspension.” Journal of Nanoscience and Nanotechnology 7(7): 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  • Patil, S. D. and D. J. Burgess (2005). Injectable dispersed systems. Boca Raton, Taylor & Francis Group.

    Google Scholar 

  • Patravale, V. B., A. A. Date, et al. (2004). “Nanosuspensions: a promising drug delivery strategy.” Journal of Pharmacy and Pharmacology 56(7): 827–840.

    Article  PubMed  CAS  Google Scholar 

  • Peters, K., S. Leitzke, et al. (2000). “Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection.” Journal of Antimicrobial Chemotherapy 45(1): 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Peters, K., R. H. Muller, et al. (1999). “An investigation into the distribution of lecithins in nanosuspension systems using low frequency dielectric spectroscopy.” International Journal of Pharmaceutics 184(1): 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Phipps, L. W. (1971). “Mechanism of oil droplet fragmentation in high pressure homogenizers.” Nature 233(5322): 617–619.

    Article  PubMed  CAS  Google Scholar 

  • Pinder, M. C. and N. K. Ibrahim (2006). “Nanoparticle albumin-bound paclitaxel for treatment of metastatic breast cancer.” Drugs of Today 42(9): 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Pozarnsky, G. A. and E. Matijevic (1997). “Preparation of monodisperse colloids of biologically active compounds.1. Naproxen.” Colloids and Surfaces. A, Physicochemical and Engineering Aspects 125(1): 47–52.

    Google Scholar 

  • Qi, L. M., J. M. Ma, et al. (1997). “Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions.” Journal of Colloid and Interface Science 186(2): 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Rabinow, B., J. Kipp, et al. (2007). “Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat.” International Journal of Pharmaceutics 339(1–2): 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Rabinow, B. E. (2004a). “Nanosuspensions in drug delivery.” Nature Reviews Drug Discovery 3(9): 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Rabinow, B. (2004b). “Nanoedge drug delivery solves the problems of insoluble injectable drugs.” Supplement to Scrip World Pharmaceutical News, October, 13–16.

    Google Scholar 

  • Rasenack, N. and B. W. Muller (2002). “Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs.” Pharmaceutical Research 19(12): 1894–1900.

    Article  PubMed  CAS  Google Scholar 

  • Rasenack, N. and B. W. Muller (2004). “Micron-size drug particles: Common and novel micronization techniques.” Pharmaceutical Development and Technology 9(1): 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, T. L., I. B. Gillespie, et al. (2004). “Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs.” Pharmaceutical Research 21(11): 2048–2057.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, T. L., J. H. Hu, et al. (2002). “A novel particle engineering technology: spray-freezing into liquid.” International Journal of Pharmaceutics 242(1–2): 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Roser, M., D. Fischer, et al. (1998). “Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats.” European Journal of Pharmaceutics and Biopharmaceutics 46(3): 255–263.

    Google Scholar 

  • Sarkari, M., J. Brown, et al. (2002). “Enhanced drug dissolution using evaporative precipitation into aqueous solution.” International Journal of Pharmaceutics 243(1–2): 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Schoenwald, R. D. and P. Stewart (1980). “Effect of particle size on ophthalmic bioavailability of dexamethasone suspensions in rabbits.” Journal of Pharmaceutical Sciences 69(4): 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Scholer, N., K. Krause, et al. (2001). “Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis.” Antimicrobial Agents and Chemotherapy 45(6): 1771–1779.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, S., G. K. Wagner, et al. (2004). “High-pressure homogenization as a process for emulsion formation.” Chemical Engineering & Technology 27(4): 361–368.

    Article  CAS  Google Scholar 

  • Schwarzer, H. C. and W. Peukert (2002). “Experimental investigation into the influence of mixing on nanoparticle precipitation.” Chemical Engineering & Technology 25(6): 657–661.

    Article  CAS  Google Scholar 

  • Shchukin, D. G. and G. B. Sukhorukov (2004). “Nanoparticle synthesis in engineered organic nanoscale reactors.” Advanced Materials 16(8): 671–682.

    Article  CAS  Google Scholar 

  • Shekunov, B. Y., P. Chattopadhayay, et al. (2006). “Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions.” Pharmaceutical Research 23(1): 196–204.

    Google Scholar 

  • Shekunov, B. Y., P. Chattopadhyay, et al. (2007). “Particle size analysis in pharmaceutics: principles, methods and applications.” Pharmaceutical Research 24(2): 203–227.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H. G., L. Farber, et al. (2003). “Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques.” Pharmaceutical Research 20(3): 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Snorek, S. M., J. F. Bauer, et al. (2007). “PQRI recommendations on particle-size analysis of drug substances used in oral dosage forms.” Journal of Pharmaceutical Sciences 96(6): 1451–1467.

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe, T. E. (2007). “Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL®-free formulation of paclitaxel.” Nanomedicine 2(4): 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Storm, G., S. O. Belliot, et al. (1995). “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.” Advanced Drug Delivery Reviews 17(1): 31–48.

    Article  CAS  Google Scholar 

  • Tan, C. P. and M. Nakajima (2005). “Beta-Carotene nanodispersions: preparation, characterization and stability evaluation.” Food Chemistry 92(4): 661–671.

    Article  CAS  Google Scholar 

  • Texter, J. (2001). “Precipitation and condensation of organic particles.” Journal of Dispersion Science and Technology 22(6): 499–527.

    Article  CAS  Google Scholar 

  • Tinke, A. P., K. Vanhoutte, et al. (2005). “A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution.” Journal of Pharmaceutical and Biomedical Analysis 39(5): 900–907.

    Article  PubMed  CAS  Google Scholar 

  • Trotta, M., M. Gallarate, et al. (2003). “Preparation of griseofulvin nanoparticles from water-dilutable microemulsions.” International Journal of Pharmaceutics 254(2): 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Trotta, M., M. Gallarate, et al. (2001). “Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions.” Journal of Controlled Release 76(1-2): 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C. J. (2004). Real time monitoring of small particle dissolution by way of light scattering US Patent 6750966.

    Google Scholar 

  • Vergote, G. J., C. Vervaet, et al. (2001). “An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen.” International Journal of Pharmaceutics 219(1–2): 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, V., A. Dullaart, et al. (2006). “The emerging nanomedicine landscape.” Nature Biotechnology 24(10): 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  • Walz, J. Y. (1998). “The effect of surface heterogeneities on colloidal forces.” Advances in Colloid and Interface Science 74(1–3): 119–168.

    Article  CAS  Google Scholar 

  • Wang, J. Z. and D. R. Flanagan (2002). “General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data.” Journal of Pharmaceutical Sciences 91(2): 534–542.

    Google Scholar 

  • Weiss, R. B., R. C. Donehower, et al. (1990). “Hypersensitivity reactions from taxol.” Journal of Clinical Oncology 8(7): 1263–1268.

    PubMed  CAS  Google Scholar 

  • White, R. D., J. Wong, et al. (2003). “Pre-clinical evaluation of itraconazole nanosuspension for intravenous injection.” Toxicological Sciences 72: 51–51.

    Google Scholar 

  • Wu, N. Z., D. Da, et al. (1993). “Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue.” Cancer Research 53(16): 3765–3770.

    PubMed  CAS  Google Scholar 

  • Wu, Y., A. Loper, et al. (2004). “The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human.” International Journal of Pharmaceutics 285(1–2): 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, T. K., Z. Lu, et al. (2005). “Formulating paclitaxel in nanoparticles alters its disposition.” Pharmaceutical Research 22(6): 867–874.

    Article  PubMed  CAS  Google Scholar 

  • Yin, S. X., M. Franchini, et al. (2005). “Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray-drying.” Journal of Pharmaceutical Sciences 94(7): 1598–1607.

    Article  PubMed  CAS  Google Scholar 

  • Young, P. M., D. Cocconi, et al. (2002). “Characterization of a surface modified dry powder inhalation carrier prepared by “particle smoothing”.” Journal of Pharmacy and Pharmacology 54(10): 1339–1344.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. R., T. W. Tan, et al. (2007). “Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies.” Drug Development and Industrial Pharmacy 33(5): 569–575.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 AAPS

About this chapter

Cite this chapter

Verma, S., Burgess, D. (2010). Solid Nanosuspensions: The Emerging Technology and Pharmaceutical Applications as Nanomedicine. In: Kulshreshtha, A., Singh, O., Wall, G. (eds) Pharmaceutical Suspensions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1087-5_10

Download citation

Publish with us

Policies and ethics